Система питания дизельного двигателя – устройство, диагностика, ремонт + видео

Ремонт системы питания дизельных двигателей

Специфичность ремонта топливной аппаратуры дизельных двигателей объясняется наличием в ней прецизионных (высокоточных) пар. Детали каждой из этих пар не являются взаимозаменяемыми и поставляются заводами попарно. Поэтому при износе деталей, входящих в прецизионную пару, их ремонтируют или заменяют комплектами.

Необходимость в разборке и ремонте топливного насоса выявляют во время его предварительного испытания. Основными деталями топливного насоса, состояние которых влияет на его работоспособность, являются детали прецизионных пар; плунжер-гильза, нагнетательный клапан–гнездо (седло) клапана. Плунжерная пара изнашивается под воздействием твердых абразивных частиц, находящихся в топливе, вследствие плохой его гильзы имеет местный характер.

Наибольший износ плунжера в виде матовых пятен наблюдается на участке поверхности у верхней кромки против впускного отверстия и у косой кромки против отсечного отверстия. На внутренней поверхности гильзы наибольшему износу подвержены места вокруг впускного и отсечного отверстий. При зазоре между плунжером и втулкой свыше 10 мкм вместо 1,5…2,5 мкм у новой пары необходима их замена.

Измерить столь малые местные износы или зазоры трудно, поэтому определение технического состояния плунжерной пары проводят косвенным путем следующим образом: вставив плунжер в гильзу и закрыв в ней пальцами отверстие, постепенно выводят плунжер из гильзы, создавая в ее внутренней поверхности разрежение, если после этого плунжер отпустить, то он должен за счет разности давлений возвратиться в исходное положение без всяких признаков заедания. Состояние плунжерной пары проверяется специальным прибором по скорости просачивания топлива. Установленную в прибор гильзу заполняют до краев смесью, состоящей из двух частей зимнего дизельного масла и одной части дизельного топлива. Плунжер, вставленный в гильзу, нагружают специальным рычагом. По мере просачивания смеси через зазор между плунжером и гильзой плунжер будет опускаться, а когда косая кромка сравняется с отсечным отверстием, он резко «провалится». Время в секундах от начала погружения до его проваливания является характеристикой плотности плунжерной пары. Пары, имеющие плотность менее 3 с, выбраковываются. По развиваемому давлению, определяемому максиметром или манометром на собранном насосе, судят о техническом состоянии плунжерной пары.

Изношенные плунжеры и гильзы восстанавливают притиркой и хромированием. При.этом вначале их притирают с помощью чугунных разрезных притиров до выведения следов износа. Затем плунжер хромируют и притирают по гильзе до получения нормального сопряжения прецизионной пары. При притирке плунжеру, установленному в патроне небольшого станка или закрепленному особым захватом на валу электромоторка, сообщают вращательное движение. Гильзу удерживают в руках и равномерно перемещают вдоль плунжера, на который нанесен слой пасты. Применяя различные номера пасты ГОИ (вначале грубые, затем тонкие), доводят рабочие поверхности до такого состояния, при котором становятся незаметными риски и круговые линии.

Восстановление изношенных плунжеров и гильз можно производить и без хромирования. Для этого изношенные гильзы и плунжеры раскомплектовывают и подбирают в пары заново так, чтобы диаметр плунжера был несколько больше диаметра гильзы. Затем с помощью чугунного разрезного притира доводят плунжер до диаметра, примерно соответствующего внутреннему диаметру гильзы, с которой он должен быть скомплектован. Окончательную притирку плунжера производят по гильзе. Несмотря на то что при этом способе восстановления часть деталей в пары скомплектовать не удается, этот метод ремонта прецизионных пар может быть рекомендован для тех ремонтных мастерских, которые не располагают установками для хромирования.

Нагнетательный клапан и его седло также изнашиваются под действием твердых частиц, находящихся в топливе. В результате износа запорных конических фасок клапана и седла нарушается герметичность пары. Износ поверхности отверстия в седле клапана приводит к подтеканию и закоксовыванию форсунки, увеличению количества топлива, подаваемого насосным элементом.

Притирка обратного клапана выполняется так же, как и клапанов двигателя. Ее производят вручную при помощи оправок, показанных на рис. 1. Пасту наносят в небольших количествах только на залориую фаску, чтобы исключить возможность ее попадания на разгрузочный поясок клапана. Притертый клапан должен садиться на свое гнездо под действием собственной массы из любого положения. Плотность посадки клапана проверяют опрессовкой сжатым воздухом или дизельным топливом на специальном приспособлении.

Отремонтированный и собранный топливный насос обкатывают, испытывают и регулируют на испытательных стендах СДТА-1 и СДТА-2. Во время обкатки проверяют давление топлива, отсутствие ненормальных шумов, стуков, заеданий, подтекания топлива, масла и при необходимости устраняют замеченные неисправности. Испытывают и регулируют топливный насос в определенной последовательности. Вначале регулируют ход рейки, проверяют и налаживают регулятор топливного насоса. Затем проверяют и регулируют количество топлива, подаваемого насосными элементами, угол начала впрыска топлива. После этого рекомендуется снова проверить количество топлива, подаваемого насосными элементами.

Нарушения в работе форсунок чаще всего являются следствием износов и других неисправностей деталей распылителей. Износ деталей вызывается твердыми частицами, находящимися в топливе, протекающем через форсунку.

К характерным дефектам прецизионной пары корпус распылителя — игла распылителя (рис. 2) относятся закоксовывание ее деталей, увеличение зазора между иглой и корпусом, износ торца иглы и донышка распылителя у отверстия.

Нагар и грязь с деталей распылителя после их размягчения бензином очищают деревянными или латунными «чистиками». Категорически запрещается для очистки пользоваться стальными инструментами (ножами, шабером, проволокой и т.д.), а также наждачной бумагой.

Восстановление необходимого зазора между иглой распылителя и его корпусом производят притиркой иглы до выведения следов износа с последующим хромированием и притиркой иглы к корпусу распылителя. Кроме того, восстановление может производиться перестановкой иглы с одного распылителя в другой. При этом к распылителю подбирают иглу с несколько увеличенным диаметром так, чтобы она перемещалась в корпусе с трудом.

Подобранные таким образом детали притирают друг к другу с помощью паст ГОИ, наносимых на притираемые поверхности. Нормально притертые детали, смазанные профильтрованным дизельным топливом, должны обеспечивать такую посадку, при которой под действием собственной массы игла плавно опускается в отверстие корпуса.

Плотность посадки торца распылителя на его донышко восстанавливают раздельной притиркой этих деталей к чугунным притирочным плитам.

Для притирки из корпуса распылителя вынимают два установочных штифта, после чего его устанавливают в специальную державку, изготовленную из листовой латуни (рис. 3). Державка состоит из корпуса и пластинчатой пружины, обеспечивающей давление на вставленную в корпус иглу с небольшим усилием.

Притирка производится вручную. Для этого на притирочную плиту наносят пасту ГОИ, растворенную керосином, после чего державке с деталями сообщают круговые движения. Притирка донышка производится в том же приспособлении. Для этого перед притиркой донышко поворачивают рабочей поверхностью к плите и устанавливают на штифты корпуса распылителя.

После притирки восстановленные детали тщательно моют в бензине и проверяют на отсутствие рисок и перекосов рабочих поверхностей. Наличие рисок на притираемых поверхностях указывает на необходимость продолжения притирки с обязательным переходом на более мелкие номера пасты. Окончательная проверка качества восстановления прецизионных деталей распылителя производится испытанием его в собранной форсунке на герметичность на приборах К.П-160, KJI-1609A (КИ-562) или приборе КИ-3333 (рис. 4). Собранную форсунку устанавливают в прибор и плотно зажимают в нем. Прокачивая через форсунку ручным насосом прибора дизельное топливо или его смесь с маслом, создают определенное давление и затем измеряют время падения давления.

На специализированных ремонтных предприятиях испытание и регулировку форсунок проводят на стендах КИ-1404 с механическим приводом.

После испытания у форсунок, показавших удовлетворительную герметичность, регулируют давление впрыска. Для этого, изменяя затяжку пружины форсунки с помощью винта, регулируют давление впрыска по манометру прибора или стенда в соответствии с техническими условиями.

Одновременно проверяют качество распыла при нормальном давлении впрыска, а также при давлениях, на 2…2,5 МПа выше и ниже нормального. Скорость подкачивания топлива равна 60…80 впрыскам в минуту. Топливо, выходящее из распылителя, должно быть в туманообразном состоянии, без заметных на глаз капель, струек и подтекания распылителя. Конус распыла должен быть ровным, без смещений.

У многодырчатых форсунок проверяют наличие и равномерность впрыска топлива через все отверстия, проводя впрыск на темный металлический экран.

Отрегулированные форсунки соединяют с топливным насосом и обкатывают в течение 10 мин при полной подаче топлива и номинальной частоте вращения кулачкового валика. Обкатанные форсунки вновь устанавливают на тот же прибор или стенд для испытания и проверяют их на герметичность и качество распыла.

Распылители форсунок одной марки могут отличаться друг от друга своей пропускной способностью. Поэтому топливный насос должен устанавливаться на двигатель с теми же форсунками, с которыми проводилась его регулировка на стенде, и в том же порядке по насосным элементам.

Основными дефектами топливо-провода высокого давления являются износ или смятие конусных наконечников, сужение топливопроводного канала вследствие отложений на внутренних стенках или смятия трубки. Отложения внутри трубок удаляют промывкой и продувкой сжатым воздухом. Неисправный конусный наконечник отрезают, и высаживают новый наконечник под прессом с помощью специального приспособления. Отсутствие сужения канала трубки можно проверить проволокой диаметром 1,3 мм, которая должна свободно проходить через канал трубки, или шариком диаметром 1,3 мм, который прогоняют через трубку сжатым воздухом. Трубки, имеющие трещины, выбраковывают и заменяют новыми.

vitalxbc › Блог › Система впрыска топлива Common Rail дизельных ДВС.

Система впрыска Common Rail является самой современной системой впрыска топлива дизельных двигателей. Работа системы Common Rail основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы, наподобие бензиновых ДВС (Common Rail в переводе означает общая рампа). Система впрыска разработана специалистами фирмы Bosch.

Наибольшее распространения получили четыре типа систем COMMON RAIL, названным по имени их производителя. BOSCH, DELPHI, DENSO и SIEMENS. Каждый автопроизводитель имеет собственную аббревиатуру, которая обозначает как систему, так и ее отдельные элементы :

BMW : D-двигатели (также используются Land Rover как TD4)
Cummins и Scania : XPI
Cummins : CCR
Daimler : CDI (для автомобилей Chrysler и Jeep — CRD)
Fiat : Fiat, Alfa Romeo и Lancia — JTD (MultiJet, JTDm, Ecotec CDTi, TiD, TTiD, DDiS, Quadra-Jet)
Ford Motor : TDCi Duratorq и Powerstroke
General Motors : Opel/Vauxhall — CDTi и DTi для Isuzu
General Motors : Daewoo/Chevrolet — VCDi (VM Motori — Ecotec CDTi)
Honda : i-CTDi
Hyundai и Kia : CRDi
Mahindra : CRDe
Maruti Suzuki : DDiS
Mazda : CiTD
Mitsubishi : DI-D (разработано новое поколение 4N1 с давлением в системе впрыска до 2000 bar)
Nissan : dCi
PSA Peugeot Citroen : HDI, HDi (Volvo S40/V50 использует двигатели PSA 1,6D & 2,0D, JTD)
Renault : dCi
SsangYong : XDi
Subaru : TD
Tata : DICOR
Toyota : D-4D
Volkswagen Audi Group (Skoda) : TDI. CR в 2005 году пришла на смену насос-форсункам.
Volvo : D3, D4 и D5

Применение данной системы позволяет достигнуть снижения расхода топлива, токсичности отработавших газов, уровня шума дизеля. Главным преимуществом системы Common Rail является широкий диапазон регулирования давления топлива и момента начала впрыска, которые достигнуты за счет разделения процессов создания давления и впрыска.

Конструктивно система впрыска Common Rail составляет контур высокого давления топливной системы дизельного двигателя. В системе используется непосредственный впрыск топлива, т.е. дизельное топливо впрыскивается непосредственно в камеру сгорания. Система Common Rail включает топливный насос высокого давления, клапан дозирования топлива, регулятор давления топлива (контрольный клапан), топливную рампу и форсунки. Все элементы объединяют топливопроводы.

1. топливный бак
2. топливный фильтр
3. топливный насос высокого давления
4. топливопроводы
5. датчик давления топлива
6. топливная рампа
7. регулятор давления топлива
8. форсунки
9. электронный блок управления
10. сигналы от датчиков
11. усилительный блок (на некоторых авто)

Топливный насос высокого давления (ТНВД) служит для создания высокого давления топлива и его накопления в топливной рампе. Современные топливные насосы высокого давления — плунжерного типа. Клапан дозирования топлива регулирует количество топлива, подаваемого к топливному насосу высокого давления в зависимости от потребности двигателя. Клапан конструктивно объединен с ТНВД.
Регулятор давления топлива предназначен для управления давлением топлива в системе, в зависимости от нагрузки на двигатель. Он устанавливается в топливной рампе. Топливная рампа предназначена для выполнения нескольких функций: накопления топлива и содержание его под высоким давлением, смягчения колебаний давления, возникающих вследствие пульсации подачи от ТНВД, распределения топлива по форсункам. Форсунка важнейший элемент системы, непосредственно осуществляющий впрыск топлива в камеру сгорания двигателя. Форсунки связаны с топливной рампой топливопроводами высокого давления. В системе используются электрогидравлические форсунки или пьезофорсунки. Впрыск топлива электрогидравлической форсункой осуществляется за счет управления электромагнитным клапаном. Активным элементом пьезофорсунки являются пьезокристаллы, значительно повышающие скорость работы форсунки.

Управление работой системой впрыска Common Rail обеспечивает система управления дизелем, которая объединяет датчики, блок управления двигателем и исполнительные механизмы систем двигателя. Система управления дизелем включает датчики оборотов двигателя, Холла, положения педали акселератора, расходомер воздуха, температуры охлаждающей жидкости, давления воздуха, температуры воздуха, давления топлива, кислородный датчик (лямбда-зонд) и другие. Основными исполнительными механизмами системы впрыска Common Rail являются форсунки, клапан дозирования топлива, а также регулятор давления топлива.

Принцип действия системы впрыска Common Rail

На основании сигналов, поступающих от датчиков, блок управления двигателем определяет необходимое количество топлива, которое топливный насос высокого давления подает через клапан дозирования топлива. Насос накачивает топливо в топливную рампу. Там оно находится под определенным давлением, обеспечиваемым регулятором давления топлива. В нужный момент блок управления двигателем дает команду соответствующим форсункам на начало впрыска и обеспечивает определенную продолжительность открытия клапана форсунки. В зависимости от режимов работы двигателя блок управления двигателем корректирует параметры работы системы впрыска.
С целью повышения эффективной работы двигателя в системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя. При этом различают: предварительный впрыск, основной впрыск и дополнительный впрыск.

Предварительный впрыск небольшого количества топлива производится перед основным впрыском для повышения температуры и давления в камере сгорания, чем достигается ускорение самовоспламенения основного заряда, снижение шума и токсичности отработавших газов. В зависимости от режима работы двигателя производится:

2 предварительных впрыска — на холостом ходу;
1 предварительный впрыск — при повышении нагрузки;
0(предварительный впрыск не производится) — при полной нагрузке.
Основной впрыск обеспечивает стабильную работу двигателя.

Дополнительный впрыск производится для повышения температуры отработавших газов и улучшения сгорания частиц сажи в сажевом фильтре (регенерация сажевого фильтра).

Развитие системы впрыска Common Rail осуществляется по пути увеличения давления впрыска:

1 поколение – 140 МПа, с 1999 года;
2 поколение – 160 МПа, с 2001 года;
3 поколение – 180 МПа, с 2005 года;
4 поколение – 220 МПа, с 2009 года.

Чем выше давление в системе впрыска, тем больше топлива можно впрыснуть в цилиндр за равный промежуток времени и, соответственно, реализовать большую мощность.

ТНВД является одним из основных ко элементов в конструкции системы впрыска двигателя. Он выполняет, как правило, две важнейшие функции: 1- нагнетание определенного количества топливной жидкости; 2- регулирование по времени начала впрыскивания. С момента появления аккумуляторных систем впрыска работа по регулированию времени начала впрыска была возложена на управляемые электроникой форсунки.
Основу ТНВД составляет плунжерная пара. Данный механизм составляет поршень (другое название- плунжер) и цилиндр (другое название — втулка) совсем небольшого размера. Плунжерную пару изготавливают из стали высокого качества и делают это с высочайшей точностью. Так, что между плунжером и втулкой имеется минимальный зазор (сопряжение прецизионное). В системе Common Rail используется Магистральный ТНВД.

Читайте также:  Оборудование для полировки автомобиля - машинка и другие инструменты

С конструктивной точки зрения магистральный насос может иметь 1(один), 2(два) или 3(три) плунжера. Приводы плунжеров осуществляются с помощью использования кулачкового вала либо кулачковой шайбы.

При вращательном движении кулачкового вала (эксцентрика кулачковой шайбы) под действием возвратной пружинки плунжер двигается вниз. Увеличивается объем компрессионной камеры и уменьшается давление в ней. Под воздействием разряжения воздуха открывается клапан впуска, и топливная жидкость поступает в камеру. При движении плунжера вверх происходит возрастание давления в камере, клапан впуска закрывается. При создании определенного давления открывается клапан выпуска и топливная жидкость поступает в рампу. Управление подачей топливной жидкости производится в зависимости от потребностей двигателя и осуществляется с помощью клапана дозирования топливной жидкости. В исходном (обычном) положении этот клапан открыт. Но по сигналу электронного блока управления он закрывается на определенную ширину, тем самым регулируется количество затекающей в компрессионную камеру топливной жидкости.

Форсунка (инжектор), являясь элементом конструкции системы впрыскивания, предназначена для того, чтобы качественно дозировать подачу топливной жидкости, его распыление в камере сгорания (коллекторе впуска) и образование топливно-воздушной смеси. Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных вариантах двигателей устанавливаются форсунки с электронным управлением впрыскивания. В зависимости от того, каким способом осуществляется впрыскивание, различают нижеприведённые виды форсунок:

1. электромагнитные
2. электрогидравлические
3. пьезоэлектрическая

Устанавливается, как правило, на бензиновые двигатели, в том числе оборудованные системой непосредственного впрыска. Имеет достаточно простое и надежное устройство. Оно включает электромагнитный клапан с иголкой и сопло.

Работа электромагнитной форсунки осуществляется так: в соответствии с заложенным в него алгоритмом электронный блок управления точно обеспечивает подачу напряжения на обмотку возбуждения клапана в нужный момент. При всём этом создается электромагнитное поле, оно, преодолевая усилия пружинки, втягивает якорь с иголкой и освобождает сопло. В результате производится впрыск топливной жидкости. С исчезновением напряжения пружка возвращает иголку форсунки на седло.

Используется на дизельных двигателях, в том числе на оборудованных системой впрыскивания Common Rail. В конструкцию электрогидравлической форсунки входит электромагнитный клапан, камера управления, впускной и сливной дроссели.

Принцип работы этой форсунки основан на использовании давления топлива, как при впрыскивании, так и при его прекращении. В начальном положении электромагнитный клапан обесточен и закрыт, иголка форсунки прижата к седлу по средствам силы давления топливной жидкости на поршень в камере управления. Впрыскивание топливной жидкости не происходит. При этом давление топлива на иголку, ввиду разности площадей контакта, меньше давления на поршень. По точной команде электронного блока управления запускается работа электромагнитного клапана, открывая сливной дроссель. Топливная жидкость из камеры управления идёт через дроссель к сливной магистрали. Впускной дроссель при этом препятствует быстрому выравниванию давлений в камере управления и в магистрали впуска. Давление на поршень снижается, а давление топлива на иглу не претерпевает изменений. Игла поднимается, происходит впрыск топливной жидкости.

Пьезоэлектрическая форсунка (пьезофорсунка)

Это самое совершенное устройство, обеспечивающее впрыск топливной жидкости. Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

К преимуществам пьезофорсунки относят: быстроту срабатывания (в 4 раза быстрее электромагнитного клапана), как следствие этого, возможность многократного впрыскивания топливной жидкости в течение одного цикла работы, точную дозировку впрыскиваемой топливной жидкости. Всё вышеперечисленное стало возможным благодаря использованию пьезоэффекта в управлении форсункой. Он основан на изменении длины пьезокристалла, которое происходит под действием напряжения. Конструкция самой пьезоэлектрической форсунки включает следующие элементы : пьезоэлемент, толкатель, клапан переключения и иголку. Все они помещены в корпус.

В работе форсунки данного вида, так же как и в электрогидравлическом аналоге, используют гидравлический принцип. В начальном положении иголка сидит на седле в результате высокого давления топливной жидкости. Во время подачи электрического сигнала на пьезоэлемент, увеличивается его длина. Передается усилие на поршень толкателя, открывается переключающий клапан и топливная жидкость поступает в сливную магистраль. Давление выше иглы снижается. Иголка за счет давления в нижней части поднимается, таким образом производится впрыск топливной жидкости.

Система питания дизельного двигателя – устройство, диагностика, ремонт + видео

Диагностирование систем питания дизельных двигателей включает в себя проверку герметичности системы и состояния топливных и воздушных фильтров, проверку топливоподкачивающего насоса, а также насоса высокого давления и форсунок.

Герметичность системы питания дизельного двигателя имеет особое значение. Так, подсос воздуха во впускной части системы (от бака до топливоподкачивающего насоса) приводит к нарушению работы топливоподающей аппаратуры, а негерметичность части системы, находящейся под давлением (от топливоподкачивающего насоса до форсунок), вызывает подтекание и перерасход топлива.

Впускную часть топливной магистрали проверяют на герметичность с помощью специального прибора-бачка. Часть магистрали, находящуюся под давлением, можно проверять опрессовкой ручным топливоподкачивающим насосом или визуально при работе двигателя на частоте вращения холостого хода.

Состояние топливных и воздушных фильтров проверяют визуально.

Топливоподкачивающий насос и насос высокого давления проверяют на стенде дизельной топливоподающей аппаратуры СДТА (рис. 28). При испытаниях и регулировке на стенде исправный топливоподкачивающий насос должен иметь определенную производительность при заданном противодавлении и давление при полностью перекрытом топливном канале (для двигателя ЯМЗ-236 при 1050 об/мин валика стенда производительность должна быть не менее 2,2 л/мин при противодавлении 150–170 кПа и давлении при полностью перекрытом канале 380 кПа).

Рис. 28. Стенд диагностирования топливных насосов дизельных двигателей: 1 — ТНВД, закрепленный на стенде; 2 — место для установки форсунок; 3– контрольные колбы

Топливный насос высокого давления проверяют на начало, равномерность и величину подачи топлива в цилиндры двигателя. Для определения начала подачи топлива применяют моментоскопы — стеклянные трубки с внутренним диаметром 1,5–2,0 мм, устанавливаемые на выходном штуцере насоса, и градуированный диск (лимб), который крепится к валу насоса. При проворачивании вала секции насоса подают топливо в трубки моментоскопов. Момент начала движения топлива в трубке первого цилиндра фиксируют по градуированному диску. Это положение принимают за 0° — начало отсчета. Подача топлива в последующие цилиндры должна происходить через определенные углы поворота вала в соответствии с порядком работы цилиндров двигателя. Для двигателя 740 автомобиля КамАЗ порядок работы цилиндров 1–5–4– 2–6–3–7–8, подача топлива в пятый цилиндр (секцией насоса 8) должна происходить через 45°, в четвертый (секцией 4) — 90°, во второй (секцией 5) — 135°, в шестой (секцией 7) — 180°, в третий (секцией 3) — 225°, в седьмой (секцией 6) — 270° и восьмой (секцией 2) — 315°. При этом допускается неточность интервала между началом подачи топлива каждой секцией относительно первой не более 0,5°.

В табл. 1 представлена последовательность проверки секций ТНВД и нормативный угол поворота для моментов начала подачи топлива.

Последовательность проверки секции ТНВД и нормативный угол поворота для моментов начала подачи топлива

Шестисекционный ТНВД ЯМЗ-236

Восьмисекционный ТНВД КаМАЗ-740

Рис. 29. Расположение установочных меток двигателей ЯМЗ-236, -238:

а — вид на муфту опережения впрыска и полумуфту привода ТНВД; б — вид на шкив KB и крышку распределительных шестерен; в — вид на маховик и указатель на картере маховика; 1 –муфта опережения впрыска; 2 — болты крепления ведущей полумуфты; 3 — метка на муфте; 4 — соединительная полумуфта стенда; 5–полумуфта; 6–метка на фланце полумуфты; 7 — метка на шкиве KB; 9 — указатель; 10 — маховик.

Момент начала подачи топлива секциями ТНВД зависит от правильности установки муфты опережения впрыска (MOB) относительно привода, т. е. совпадения контрольных меток с соответствующими делениями на шкалах, градуированных в градусах по углу поворота коленчатого вала (рис. 29). В двигателях автомобилей КамАЗ имеется дополнительное устройство в виде фиксатора маховика для установки KB двигателя (следовательно, и привода MOB) в положение, соответствующее началу подачи топлива первой секцией ТНВД в первый цилиндр двигателя (рис. 30).

Рис. 30. Установка коленчатого вала двигателя в положение, соответствующее началу подачи топлива в первом цилиндре автомобилей КамАЗ:

а — положение ручки фиксатора маховика в эксплуатационном режиме; б — фиксация штырем маховика при диагностике.

Угол начала подачи топлива в дизелях (по углу поворота KB в градусах) имеет еще большее значение, чем угол опережения зажигания в карбюраторных двигателях, так как и при слишком ранней подаче, и при слишком поздней, впрыск топлива форсункой в камеру сгорания будет происходить при пониженной компрессии, что нарушит процесс нормального смесеобразования.

При проверке правильности установки момента начала подачи топлива, а соответственно и подсоединения ТНВД с MOB к приводу, помимо контроля совпадения различных меток и указателей с нужным градусом на шкалах необходимо вместо трубопровода высокого давления подсоединить к первой секции ТНВД моментоскоп (рис. 31) и медленно поворачивать рычагом специального приспособления KB вместе с приводом ТНВД, подсоединяемого обычно с помощью болтов к MOB, пока топливо не начнет подниматься в стеклянной трубке моментоскопа, что и будет означать момент начала подачи топлива первой секцией.

Рис. 31. Моментоскоп: 1 — стеклянная трубка; 2 — переходная трубка; 3 — трубка от топливопровода высокого давления; 4 — шайба; 5 — накидная гайка

Если он будет слишком ранним или поздним — необходимо отвернуть болты крепления или, поворачивая корпус MOB, изменить ее положение в соответствующую сторону относительно привода. После этого следует завернуть болты и произвести проверку еще раз. В большинстве моделей дизелей угол момента начала подачи топлива составляет 17–20° (до ВМТ, по углу поворота KB). При низких температурах угол опережения увеличивают на 3 — 5°. Уже начат выпуск новой модели моментоскопа КИ-4941 (рис. 32), который не надо поддерживать рукой в ходе проверки; он также предотвращает разбрызгивание топлива по поверхности двигателя.

Для диагностирования подкачивающего насоса ТНВД, ФТО и перепускного клапана используют прибор мод. КИ-4801 (рис. 33).

Рис. 32. Моментоскоп мод. КИ-4941:

а — общий вид моментоскопа; б — установка моментоскопа на ТНВД; 1 — штуцер; 2 — уплотнение; 3 — топливоподающая трубка; 4 — соединительная трубка; 5 — контрольная стеклянная трубка; 6 — жесткий корпус; 7 — пружина

Один из наконечников прибора подсоединяют к нагнетательной магистрали подкачивающего насоса перед ФТО, а другой — между ФТО и ТНВД. Пускают двигатель и при максимальной подаче топлива замеряют давление до и после ФТО — если давление за фильтром ниже 0,6 кгс/см 2 (при нормальном давлении перед фильтром, развиваемым подкачивающим насосом –1,4– 1,6 кгс/см 2 ) это свидетельствует о засорении ФТО. Если давление, развиваемое подкачивающим насосом (перед ФТО), ниже 0,8 кгс/см 2 — насос подлежит замене.

Рис. 33. Прибор КИ-4801 для замера давления в системе топливо-подачи низкого давления перед ТНВД: 1 — манометр; 2 — переходник; 3 — кран; 4 — топливопровод; 5 — сединительный штуцер; б — шарик; 7 — винт.

Количество топлива, подаваемого в цилиндр каждой из секций насоса при испытании на стенде, определяют с помощью мерных мензурок. Для этого насос устанавливают на стенд и вал насоса приводится во вращение электродвигателем стенда. Испытание проводится совместно с комплектом исправных и отрегулированных форсунок, которые соединяются с секциями насоса трубопроводами высокого давления одинаковой длины (600 ± 2 мм). Величина цикловой подачи (количество топлива, подаваемого секцией за один ход плунжера) для двигателя 740 КамАЗ должна составлять 72,5–75,0 мм 3 /цикл.

Где иш — цикловая подача секции с максимальной производительностью, мм 3 ; umin — цикловая подача секции с минимальной производительностью, мм 3 .

Еще одним важным фактором, влияющим на качество смесеобразования в камере сгорания дизеля, а следовательно, и на процесс сгорания, является давление впрыска (давление начала подъема запорной иглы) форсунок. Оно должно составлять для двигателей ЯМЗ — 16,5–17 МПа (165–170 кгс/см 2 ); для двигателей КамАЗ — 18,5 МПа (185 кгс/см 2 ) и столько же для ЗИЛ-4331. В процессе эксплуатации жесткость рабочей пружины форсунки снижается, а, следовательно, снижается и давление впрыска. Кроме того, и момент впрыска топлива будет происходить при этом чуть раньше, что тоже нарушит нормальную работу двигателя. Поэтому в ходе диагностических работ проверка давления впрыска форсунок обязательна.

Форсунки дизельного двигателя проверяют на стенде КП-1609 (рис.34) на герметичность, давление начала подъема иглы и качество распыливания топлива. Стенд состоит из топливного бачка, секции топливного насоса высокого давления и манометра с пределами измерения до 40 МПа. Плунжер секции насоса приводится в движение вручную с помощью рычага. Для проверки форсунки на герметичность затягивают ее регулировочный винт, после чего с помощью секции насоса стенда создают в ней давление до 30 МПа и определяют время падения давления от 30,0 до 23,0 МПа.

Рис. 34. Прибор КП-1609А для проверки и регулировки форсунок

Время падения давления для изношенных форсунок не должно быть менее 5 с. Для форсунок с новым распылителем они составляет не менее 20 с. На том же приборе проверяют давление начала подъема иглы форсунки. Для этого в установленной на стенд форсунке с помощью секции насоса прибора повышают давление и определяют величину его, соответствующую началу впрыска топлива.

По аналогичному принципу работают приборы, представленные на рис. 35.

Рис. 85. Приборы для испытания и регулировки форсунок: а — КИ-ЗЗЗЗА; б — КИ-562; в — КИ-1404

При помощи указанных на рис. 34, 35 приборов проверяют и качество распыливания топлива форсункой. Топливо, выходящее из сопел распылителя, должно распыливаться до туманообразного состояния и равномерно распределяться по всему конусу распыливания.

На работающем двигателе давление начала подъема иглы можно определить с помощью максиметра, который по принципу действия аналогичен форсунке, но регулировочная гайка имеет микрометрическое устройство с нониусной шкалой, позволяющее точно фиксировать давление начала подъема иглы. Этот прибор устанавливают между секцией топливного насоса высокого давления и проверяемой форсункой. Добившись одновременности впрыска топлива форсункой и максиметром, по положению микрометрического устройства определяют, при каком давлении он происходит.

Средства проверки токсичности отработавших газов (ОГ). Для определения токсичности ОГ применяются специальные газоанализаторы для карбюраторных двигателей и дымомеры для дизельных.

Газоанализаторы представляют собой как автономные, так и встроенные в некоторые модели мотор-тестеров приборы.

В настоящее время используются два типа газоанализаторов — инфракрасные и каталитические.

Принцип действия первых основан на поглощении газовыми компонентами инфракрасных лучей с различной длиной волны. Принцип действия вторых основан на каталитическом дожигании содержащегося в выхлопных газах оксида углерода СО и, вследствие этого, фиксации повышения температуры при помощи электрического моста.

При этом газоанализаторы классифицируются по числу анализируемых компонентов.

На рис. 36 представлен внешний вид стенда «Элкон Ш-100А», который позволяет определять количество оксида углерода в ОГ двигателей автомобилей.

Дымомеры работают по принципу поглощения светового потока, проходящего через ОГ.

Дымность отработавших газов у двигателей автомобилей МАЗ, КамАЗ, ЗИЛ-4331 не должна превышать 40% в режиме свободного ускорения и 15 % при максимальной частоте вращения. Превышение указанных нормативов свидетельствует о неисправной работе топливной системы и требует принятия соответствующих мер путем проведения регулировочных работ или текущего ремонта, так как подобная неисправность может снизить мощность двигателя, привести к перерасходу топлива, а высокое содержание аэрозолей, определяющих процент дымности и состоящих из частиц сажи, золы, несгоревшего топлива, масла и т. д., оказывает вредное воздействие на экологию и здоровье человека. Дымность отработанных газов оценивается на вышеуказанных стендах через их оптическую плотность, регистрируемую при просвечивании фотоэлементом, передающим сигнал на микроамперметр, отградуированный в процентах дымности.

Читайте также:  Замена амортизаторов своими руками или восстановление?

Рис. 36. Внешний вид стенда «Элкон Ш-100А»:

1 — осциллограф; 2 — прибор для измерения углов опережения зажигания и замкнутого состояния контактов прерывателя; 3 — прибор для измерения частоты вращения тахометра; 4 — газоанализатор; 5– автометр; б– стробоскоп; 7 — мановакуумметр; К4, К6, К13 — переключатели режимов работы; I, II, III — провода; Н1 Н2 — провода корпуса и первичного сигнала; Н3— индуктивный зонд с трубкой-свечой; Н4 — емкостной зонд; V– вывод к вакууметру

Регулировочные работы по системам питания карбюраторного и дизельного двигателей. Перёд началом регулировочных работ необходимо устранить выявленные при проверке систем неисправности. Наиболее характерными и для карбюраторного и для дизельного двигателей являются устранение негерметичности в топливопроводах и агрегатах, промывка и очистка топливных и воздушных фильтров.

В карбюраторном двигателе регулируют уровень топлива в поплавковой камере, для чего изменяют число прокладок под гнездом игольчатого клапана или изгибают рычажок поплавка, упирающийся в иглу. Жиклеры, не соответствующие по пропускной способности, заменяют. Регулировку карбюраторов проводят на минимальную частоту вращения холостого хода при прогретом двигателе. До ее начала необходимо убедиться в отсутствии подсосов во впускном трубопроводе. Минимальной частоты добиваются поочередным вывертыванием и завертыванием винта качества смеси и упорного винта дросселя; подбирая наиболее выгодное их положение, соответствующее наименьшей устойчивой частоте. При правильной регулировке карбюраторный двигатель должен устойчиво работать при 400– 600 об/мин коленчатого вала.

При необходимости регулируют момент открытия клапана экономайзера, ход насоса ускорителя, датчик ограничителя максимальной частоты вращения.

У дизельного двигателя проводят регулировку топливного насоса высокого давления и форсунок. Количество топлива, подаваемого секцией, регулируют, вращая плунжер вместе с поворотной втулкой относительно зубчатого венца и изменяя тем самым активный ход плунжера. Момент начала подачи топлива секцией регулируют, ввертывая или завертывая регулировочные болты толкателя. Давление впрыска форсунки регулируют путем изменения толщины регулировочных шайб, установленных под пружину (у двигателей 740 КамАЗ), или с помощью регулировочной гайки (у двигателей ЯМЗ-236 и ЯМЗ-238).

Диагностика и ремонт топливной аппаратуры дизельных двигателей

Своевременная диагностика и ремонт топливной системы автомобиля позволяют быть уверенным в надежности железного коня, максимально увеличивают ресурс силового агрегата и сопутствующих узлов и улучшают эксплуатационные характеристики машины. Связанно это с невозможностью обеспечить оптимальное сгорание топлива при неисправности любой из деталей питания дизеля, поэтому при возникновении любых симптомов поломок или снижении динамических показателей автовладельцу рекомендуется посетить станцию технического обслуживания или провести проверку состояния топливной системы самостоятельно.

Важность проведения своевременного технического обслуживания

Схема топливной системы двигателя состоит из нескольких самостоятельных узлов, объединенных топливопроводами. Выход любого элемента из строя ведет к повышенному износу всех остальных частей топливоподачи, поэтому затягивание с определением виновника неправильной подачи горючего вызывает дополнительные повреждения, что ведет к увеличению стоимости ремонта и необходимости заменять большее количество деталей.

Так, например, вышедший из строя топливоподкачивающий насос не сможет поддерживать подачу достаточного количества горючего тнвд. Это в свою очередь приведет к ускоренному его износу. Помимо этого не будет обеспечиваться достаточное давление топлива, подаваемого в форсунки.

В результате низкого давления горючего в топливной рампе форсунки не будут нормально дозировать и распылять дизтопливо. Двигатель отклонится от оптимального режима работы. Электронный блок управления будет пытаться скорректировать ситуацию и выдаст сигнал об ошибке.

Если автовладелец не будет обращать внимание на поломку, то из-за неправильной подачи топлива силовой агрегат будет изнашиваться в ускоренном темпе. Так, вместо замены недорого топливоподкачивающего насоса, возникнет необходимость капитального ремонта двигателя и его системы питания. Это и есть основная причина, почему важно вовремя проводить диагностику топливоподачи.

Причины, вызывающие неисправности

Основными причинами, способными вызвать неисправности топливной системы дизельного двигателя, являются:

  • низкое качество заправляемого дизтоплива;
  • случайное попадание бензина в топливный бак;
  • отсутствие качественного технического обслуживания;
  • стиль езды, вызывающий механические повреждения и подсос воздуха в топливную магистраль.

Состояние фильтра также играет немаловажную роль. При его ненадлежащем состоянии происходит забивание магистралей. Топливная аппаратура для своей нормальной работы требует своевременной чистки и слива конденсата из фильтрующего элемента. При этом необходимо визуально осматривать его состояние и при необходимости производить замену.

Признаки необходимости проведения диагностики

О том, что в ближайшее время потребуется ремонт топливной аппаратуры дизельных двигателей может сигнализировать затруднительный запуск мотора. Причинами, вызывающими нестабильное включение движков являются:

  • системы впрыска топлива не обеспечивает достаточное распыление горючего;
  • чрезмерный износ нагнетательных элементов не способных обеспечить требуемое давление;
  • момент впрыска имеет неправильный угол опережения, требуется его настройка;
  • воздух в топливной системе создает нехватку дизеля перед ТНВД;
  • впрыскивание горючего слишком малой дозой, то есть необходима регулировка;
  • Несезонность топлива, залитого в бак.

Ухудшение динамических характеристик свидетельствует о том, что топливная система дизельного двигателя требует внимания автовладельца. Причинами, почему дизельный двигатель, потерял мощность могут быть:

  • неправильная регулировка насоса;
  • износ распылителей;
  • завоздушена топливная система;
  • снижение производительности подкачивающего насоса.

Также симптомами того, что необходима диагностика топливной системы дизельного двигателя, являются:

  • черный выхлоп, возникающий, когда подача топлива происходит с опозданием, либо свидетельствующий о неоптимальном смесеобразовании;
  • жесткая работа мотора, возникающая при разном дозировании топлива в цилиндры;
  • серый дым из выхлопной трубы, говорящий, что в дизельном двигателе неверное время опережения впрыска;
  • высокая температура двигателя, возникающая из-за плохого распыления горючего форсунками;
  • посторонний шум при работе, возникающий из-за попадания воздуха в топливную систему;
  • нестабильные обороты холостого хода;
  • внезапная остановка мотора как под нагрузкой, так и в холостую;
  • при отключении двигателя он продолжает работать, так как топливо просачивается через электромагнитный клапан;
  • визуальное обнаружении течи солярки.

Возрастание расхода топлива без смены стиля вождения также должно насторожить автовладельца. Причиной этого не обязательно может быть система питания, но диагностика топливной аппаратуры дизельных двигателей не будет лишней в такой ситуации. Лишь убедившись в полной исправности топливоподачи можно переходить к поиску других возможных причин увеличения потребления горючего.

Основные методы диагностики

Диагностика топливной системы легковых и грузовых автомобилей, оборудованных дизельными двигателями проводится тремя основными способами:

  • все оборудование подлежит визуально-акустическому осмотру;
  • измерение параметров при помощи проборов и стендов;
  • электронная диагностика с применением считывающего сканера и персонального компьютера.

Каждый из методов дополняет друг друга, помогая выявить поломки различного типа. Так, при визуальном осмотре обнаруживаются наиболее грубые неисправности, например, механические повреждения. Акустической диагностикой можно обнаружить посторонние звуки, возникающие в дизельных моторах. Компьютерная и стендовая проверки позволяют обнаружить поломки в электронике. Некоторые производители, например, кубота и делфи имеют собственные считывающие сканеры и программное обеспечение для поиска неисправностей.

Применение компьютера для выявления проблем

Одним из главных преимуществ компьютерной диагностики является возможность определить поломку без демонтажа и разборки узлов. Вся информация, поступающая с датчиков, подлежит обработке. После этого круг виновников неисправности сужается.

Для проведения такого вида операций персонал должен пройти специальное обучение по ремонту топливной аппаратуры современными методами. При отсутствии высококлассифицированных специалистов наличие сканера и персонального компьютера не помогут в поиске неисправности. Это является причиной невозможности повсеместного распространения электронной диагностики.

Причины наличия подсоса воздуха

Устройство топливной системы дизельного двигателя не способно работать нормально при наличии даже небольшого количества воздуха в топливной магистрали. Причинами, почему топливопровод завоздушивается, могут быть:

  • изношенность уплотнителей;
  • механические повреждения топливных шлангов, что является частой поломкой на топливных магистралях техники кубота;
  • низкий уровень топлива в баке.

Фильтр является расходником, подлежащим периодической замене. Неправильная установка или низкое качество могут привести к попаданию воздуха, поэтому если проблемы начались после техобслуживания, отремонтировать машину можно проверкой состояния фильтрующего элемента.

Развоздушивание топливной системы

Перед тем как прокачивать топливную систему необходимо определить место подсоса воздуха. Для этого необходимо придерживаться следующего плана действий:

  1. Обследовать топливную магистраль на наличие следов вытекания солярки;
  2. Отсоединить топливоподачу и обратку от ТНВД;
  3. Подсоединить топливный насос повышения давления к емкости с горючим;
  4. Расположить тару выше ТНВД;
  5. Подождать несколько часов;
  6. Запустить двигатель. Если симптомы наличия воздуха в системе пропали, значит следует менять топливные шланги;
  7. Опустить емкость ниже уровня ТНВД и подождать несколько часов;
  8. Завести мотор. При подсосе воздуха через насос, появятся симптомы завоздушивания системы.

Инструкция о том, как прокачать топливную систему дизельного двигателя:

  1. Ослабить болт обратки;
  2. Снять трубки идущие к форсункам;
  3. Прокрутить коленвал;
  4. Дождаться появления топлива и вернуть шланги на место.

Прокачка может быть проведена и без снятия трубок с форсунок. В таком случае потребуется больше времени. Обнаружить момент развоздушивания системы будет сложнее.

Своевременное проведение диагностики убережет автомобиль от неприятностей. При обнаружении любого из симптомов необходимости ремонта топливной системы дизельного двигателей не рекомендуется затягивать с поездкой на станцию технического обслуживания. Тем более современные методы проверки позволяют производить все действия непосредственно на машине без демонтажа деталей и узлов.

5 Инструкционная карта «Техническое обслуживание и текущий ремонт системы питания дизельных двигателей»

Обучение диагностике с помощью приборов си­стемы питания дизельных двигателей, ее составных частей и сбо­рочных единиц, а также выполнению технического обслуживания и текущего ремонта.

Содержимое разработки

Бюджетное профессиональное образовательное учреждение Омской области

«Седельниковский агропромышленный техникум»

Техническое обслуживание и текущий ремонт системы питания дизельных двигателей

УП.01.02. Устройство, техническое обслуживание и ремонт автомобилей

по профессии СПО 190631.01 Автомеханик

Составил: Баранов Владимир Ильич мастер производственного обучения

Седельниково, Омской области, 2015

Министерство образования Омской области БПОУ «Седельниковский агропромышленный техникум»

План занятия П/О

Группа 21 Профессия Автомеханик Мастер Баранов В.И.

УП.01.02. Устройство, техническое обслуживание и ремонт автомобилей.

Тема: Техническое обслуживание двигателя.

Тема занятия: Техническое обслуживание и текущий ремонт системы питания дизельных двигателей.

Тип занятия: Урок формирования и совершенствования трудовых умений и навыков.

Вид занятия: Комбинированное (изучение нового учебного материала, формирование практических умений и навыков, повторение изученного ранее материала).

Цель занятия: обучение диагностике с помощью приборов си­стемы питания дизельных двигателей, ее составных частей и сбо­рочных единиц, а также выполнению технического обслуживания и текущего ремонта.

Формирование и усвоение приемов проведения технического обслуживания и текущего ремонта системы питания дизельных двигателей.

Формирование у студентов профессиональных навыков при выполнении технического обслуживания и текущего ремонта системы питания дизельных двигателей.

Формирование у студентов умения оценивать свой уровень знаний и стремление его повышать;

Развитие навыков самостоятельной работы, внимания, координации движений.

Воспитание у студентов аккуратности, трудолюбия, бережного отношения к оборудованию и инструментам;

Пробуждение эмоционального интереса к выполнению работ;

Способствовать развитию самостоятельности студентов.

Закрепить полученные знания, приемы, умения и навыки по выполнению технического обслуживания и текущего ремонта системы питания дизельных двигателей.

Требования к результатам усвоения учебного материала.

Студент в ходе освоения темы занятия учебной практики должен:

– выполнения ремонта деталей автомобиля;

– снятия и установки агрегатов и узлов автомобиля;

– использования диагностических приборов и технического оборудования;

– выполнения регламентных работ по техническому обслуживанию автомобилей.

– снимать и устанавливать агрегаты и узлы автомобиля;

– определять неисправности и объем работ по их устранению и ремонту;

– определять способы и средства ремонта;

– применять диагностические приборы и оборудование;

– использовать специальный инструмент, приборы, оборудование.

В ходе занятия у студентов формируются

ПК 1.1. Диагностировать автомобиль, его агрегаты и системы;

ПК 1.2. Выполнять работы по различным видам технического обслуживания.

ПК 1.3. Разбирать, собирать узлы и агрегаты автомобиля и устранять неисправности.

ОК 1. Понимать сущность и социальную значимость будущей профессии, проявлять к ней устойчивый интерес.
ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.

ОК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.

Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. – М.: Издательский центр «Академия», 2012.

Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.

Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.

Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.

Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.

Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.

Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.

Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.

Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.

Применяемые оборудование, приспособления, инструменты и материалы:

двигатель Д-243 для горячей регулировки, моментоскоп, прибор КП-609А для проверки форсунок, приспособление КИ-16301А для проверки форсунок и прецензионных пар топлив­ного насоса, прибор КИ-4801 для замера давления в системе топливоподачи низкого давления, притирочная паста, набор гаечных ключей, отвертка, бензин, ветошь, рукавицы, бачок для слива то­плива, секундомер.

Упражнение 1. Выявление неисправностей системы питания дизельного двигателя.

При поиске неисправностей системы питания дизельного дви­гателя следует иметь в виду, что их признаки характерны и для неисправностей других систем и механизмов.

Диагностика герметичности системы питания производится при каждом текущем обслуживании автомобиля. Наличие в си­стеме питания воздуха можно обнаружить по выделению пены или воздушных пузырьков из-под ослабленной контрольной проб­ки на крышке фильтра тонкой очистки при работе двигателя на малых частотах вращения коленчатого вала.

В этом случае необходимо слить отстой из фильтров грубой и тонкой очистки в объеме 0,10. 0,15 л, произвести запуск двигате­ля и дать ему поработать 3. 4 мин на холостых оборотах для уда­ления воздуха, который мог попасть в топливную систему.

Рис. 1. Прибор КИ-4801 для измерения давления в системе топливоподачи низкого давления: 1- манометр; 2- кран.

Для измерения давления в системе топливоподачи низкого дав­ления используется прибор КИ-4801 (рис. 1), один из наконечни­ков которого присоединяется к нагнетательной магистрали подка­чивающего насоса перед фильтром тонкой очистки топлива, а дру­гой — между фильтром и топливным насосом. Перед проверкой давления из системы необходимо удалить воздух, открыв запорный клапан и прокачав систему ручным топливоподкачивающим насо­сом. Давление топлива измерять при работающем двигателе. Уста­новив частоту вращения коленчатого вала, равную 2 100 мин- 1 (мак­симальная подача топлива) и используя кран 2, по манометру 1 определить давление топлива до и после фильтра тонкой очистки.

Читайте также:  Ремонт и замена подвески и рычагов своими руками

Давление до фильтра должно быть 0,12. 0,15 МПа, а после фильтра — не менее 0,06 МПа. Если давление до фильтра, созда­ваемое подкачивающим насосом, менее 0,08 МПа, насос подлежит замене. Если давление не изменяется, значит, засорились филь­трующие элементы тонкой очистки топлива. При равенстве или небольшой разности давлений до и после фильтра очистки топли­ва следует его разобрать и проверить состояние уплотнений в фильтрующих элементах.

Момент начала нагнетания топлива секциями топливного насо­са определяется с помощью моментоскопа (рис. 2).

Рис. 2. Конструкция моментоскопа:

Стеклянная трубка; 2- резиновая трубка; 3- топливопровод; 4- накидная гайка; 5- штуцер секции топливного насоса.

Для этого от проверяемой секции топливного насоса следует отсоединить то­пливопровод высокого давления. Вывернув штуцер из головки то­пливного насоса, вынуть пружину нагнетательного клапана и установить вместо нее технологическую пружину, входящую в комплект моментоскопа, после чего, ввернув штуцер на прежнее место, навинтить на него накидную гайку моментоскопа. Прока­чав топливную систему ручным подкачивающим насосом до пол­ного удаления пузырьков воздуха, включить полную подачу топлива. Затем вручную прокрутить коленчатый вал двигателя до заполнения стеклянной трубки моментоскопа топливом.

Сдавливанием резиновой соединительной трубки удалить часть топлива и, продолжая прокручивать коленчатый вал, следить за уровнем топлива в стеклянной трубке. Начало повышения уровня топлива в стеклянной трубке является моментом начала нагнета­ния топлива секцией топливного насоса. Этот момент должен на­ступить за 20° до верхней мертвой точки (ВМТ). В момент начала нагнетания топлива первой секцией метки на муфте опережения впрыска и корпусе насоса должны совпасть. Если при этом угол поворота кулачкового вала насоса принять равным нулю, порядок начала подачи топлива остальными его секциями будет следую­щим: вторая секция — при 45°, восьмая секция — при 90°, четвер­тая секция — при 135°, третья секция — при 180°, шестая сек­ция — при 225°, пятая секция — при 270°, седьмая секция — при 315°. Неточность интервала нагнетания топлива любой секцией насоса относительно первой может составлять не более 0,5°.

Проверку начала подачи топлива необходимо производить при снятой муфте опережения впрыскивания топлива.

Упражнение 2. Диагностирование работы форсунок.

Форсунки проверяются на качество распыливания топлива, герметичность и давление начала впрыска топлива (начало подъе­ма иглы форсунки).

Сначала форсунки проверяются на работающем двигателе. По­очередно выключать форсунки, т.е. ослаблять накидную гайку штуцера проверяемой форсунки, чтобы топливо вытекало нару­жу, а не поступало в форсунку. Если выключенная форсунка ис­правна, перебои в работе двигателя увеличатся, частота вращения коленчатого вала уменьшится и дымность выпуска не станет мень­ше. Если же форсунка неисправна, характер работы двигателя не изменится и дымность выпуска также не уменьшится.

Проверка герметичности форсунки, давления впрыска и каче­ства распыливания топлива производится с помощью прибора КП-609А (рис. 3).

При проверке герметичности форсунки следует медленно за­вернуть запорный вентиль 2 манометра 1 и одновременно с помо­щью рычага 3 увеличить давление до 30 МПа. Затем, прекратив подачу топлива, наблюдать за снижением давления. При давлении 28 МПа включить секундомер и определить время снижения дав­ления до 23 МПа.

Допустимое время падения давления для исправной форсунки составляет не менее 5 с, а с новым распылителем — 20. 30 с. Под­текание топлива или увлажнение торца распылителя при указан­ном снижении давления не допускается.

Рис. 3. Прибор КП-609А для проверки форсунок:

Манометр; 2- запорный вентиль; 3- рычаг насоса.

Давление начала впрыска топлива (начала подъема иглы фор­сунки) проверяют по его значению в момент впрыска топлива.

Для этого ввертывавают до упора запорный вентиль 2 маномет­ра 1 и рычагом 3 насоса сначала медленно повышают давление до 12,5 МПаг а затем повышают его со скоростью 0,5 МПа/с и наблю­дают за началом впрыска топлива.

У двигателей ЯМЗ-236 и ЯМЗ-238 начало впрыска топлива фор­сункой должно происходить при давлении (15 ± 0,5) МПа.

Регулируют форсунку регулировочным винтом, изменяя натя­жение пружины, прижимающей иглу к отверстию распылителя.

Качество распиливания топлива форсункой проверяется при от­крытом запорном вентиле 2 манометра 1. Следует произвести не­сколько резких качков рычагом 3 и наблюдать за характером впры­ска. Топливо, выходящее из сопел распылителя, должно разбрызги­ваться до туманообразного состояния. Угол конуса распиливания контролируется по линиям на защитном колпачке. Снижение дав­ления при впрыске топлива должно быть в пределах 0,8. 1,7 МПа, причем подтекание топлива не допускается. Начало и конец впрыска топлива характеризуются резким звуком (треском).

Упражнение 3. Текущий ремонт сборочных единиц системы пи­тания дизельных двигателей.

На занятии производятся восстановительные работы, не тре­бующие наличия сложного оборудования или сложной техноло­гии восстановления и ремонта: притирка рабочих поверхностей клапанов и их седел, запорных игл и распылителей форсунок, плунжерных пар, замена потерявших упругость пружин, разваль­цовка трубопроводов.

Разобрав форсунку с закоксованным отверстием распылителя, следует прочистить детали деревянным скребком, пропитанным дизельным топливом, и промыть их в бензине. Сопловые отвер­стия прочистить стальной проволокой диаметром 0,25 мм. При подтекании топлива по конусу распылителя или заедании иглы необходимо заменить корпус распылителя с иглой. Перед сборкой форсунки распылитель и иглу тщательно промыть в чистом бензи­не и смазать предварительно отфильтрованным дизельным топли­вом. Произвести стендовое испытание отремонтированных фор­сунок на их работопригодность.

Какие неисправности системы питания дизельного двигателя отно­сятся к основным?

Перечислите характерные неисправности системы питания дизельных двигателей.

Перечислите внешние признаки отказов и неисправностей системы питания дизельного двигателя.

Каковы причины затрудненного пуска дизельного двигателя?

При каких неисправностях топливной системы работа дизельного двигателя сопровождается выделением дыма черного цвета (что указывает на неполное сгорание топлива)?

Каковы причины уменьшения подачи топлива и снижения давления при впрыскивании топлива?

Какие неисправности системы питания приводят к снижению мощ­ности дизельного двигателя?

Почему нарушается равномерность работы дизельного двигателя?

Какие действия следует произвести для проверки герметичности топливной системы до топливного фильтра при попадании в нее воз­духа?

В чем заключается проверка состояния фильтров системы питания дизельных двигателей?

Возможна ли проверка работоспособности топливоподкачивающего насоса без специального стенда?

Какие параметры топливного насоса высокого давления подлежат проверке?

Каковы основные неисправности форсунок?

Каким образом форсунки очищают от нагара?

Какие действия следует произвести при загрязнении воздушного фильтра, если при проверке на картоне остается только налет пыли серого цвета?

Какие операции технического обслуживания системы питания дизель­ного двигателя проводятся при ежедневном обслуживании (ЕО)?

Какие операции предусмотрены при первом техническом обслужива­нии (ТО-1) дизельного двигателя?

Диагностика дизельного двигателя автомобиля: тонкости и нюансы

Дизельный двигатель является достаточно надежным и проверенным временем типом ДВС. Однако, как и любой другой сложный механизм, дизели также имеют ряд определенных проблем. Как правило, большинство распространенных неполадок связаны не с самим мотором, а с его топливной системой.

Также хорошо известно, что дизельный агрегат является более выносливым и «ходит» дольше бензиновых аналогов до капитального ремонта. При этом на ресурс дизельного двигателя сильно влияет именно топливоподающая аппаратура, которая определяет качество его работы и общий срок службы.

Далее мы поговорим о том, для чего нужна и что показывает диагностика дизельного двигателя, как часто и в каких случаях ее проводить, а также почему регулярная диагностика топливной системы дизельных двигателей позволяет значительно продлить жизнь такому мотору.

Проверка дизельного двигателя и его систем: на что обратить внимание

Итак, на начальном этапе или в комплексе с проведением диагностических процедур следует обращать особое внимание на признаки, которые могут точнее указать на характер неисправности.

Другими словами, необходимо точно зафиксировать, как проявляется проблема. Например, если дизельный двигатель плохо заводится, тогда возможными причинами могут оказаться:

  • изношенные элементы внутри ТНВД;
  • неверно выставленный угол опережения впрыска;
  • изношены распылители на дизельных форсунках;
  • снижение давления впрыска дизтоплива;
  • завоздушивание топливной системы;
  • топливо подается в малом объеме из-за проблем с регулятором;
  • происходят сбои в работе подкачивающего топливного насоса;
  • неполадки свечей накаливания;
  • горючее парафинизируется в системе;

Если заметно снижение мощности дизеля, тогда также необходимо обратить внимание на следующие возможные причины:

  • износ плунжерных пар ТНВД и/или регулятора давления;
  • неправильная регулировка топливного насоса;
  • ненастроенный угол опережения впрыска;
  • неполадки или износ распылителей на форсунках;
  • низкое давления впрыска дизтоплива (неисправности системы питания или засорение фильтров);
  • проблемы с подкачивающим насосом;
  • воздух в топливных магистралях или других элементах;

Также добавим, что высокий расход топлива, жесткая работа дизеля или троение, черный, белый, сероватый выхлоп, рывки, провалы при разгоне, высокие обороты холостого хода или плавающие обороты, солярка в масле и другие симптомы и признаки также часто указывают на:

  • неправильный угол опережения впрыска;
  • износ плунжерных пар насоса высокого давления;
  • загрязнение или повреждение форсунок и распылителей;
  • грязный воздушный и/или топливный фильтр;
  • завоздушивание системы топливоподачи;
  • ранний или поздний впрыск дизтоплива;
  • нарушение смесеобразования;
  • пробой прокладки ГБЦ;
  • сбои в работе клапанного механизма и фаз ГРМ;
  • низкую компрессию по цилиндрам;

Еще в процессе диагностики нужно проверить состояние «обратки», так как сливной топливопровод от насоса к топливному баку может быть забит. Параллельно проверяется и давление картерных газов, система EGR.

Диагностика топливных систем дизельных двигателей

Как видно, хотя в дизельном моторе вполне могут выйти из строя клапана ГРМ, поршни или кольца, большинство неисправностей дизеля связаны именно с системой питания.

По этой причине проверка узлов и элементов топливной системы является первостепенной задачей.

Изношенными могут оказаться и нагнетательные клапаны, а еще распространенной ситуацией является нарушение правильной регулировки ТНВД. Как правило, к таким неполадкам приводят тяжелые условия эксплуатации, нарушение или игнорирование базовых рекомендаций по обслуживанию двигателя, а также использование дизтоплива низкого качества.

Среди основных методов диагностики специалисты выделяют три:

  1. Визуальный осмотр и анализ шумов во время работы ДВС.
  2. Замеры определенных параметров (давление топлива и т.п.).
  3. Компьютерная диагностика дизельного двигателя.

В первом случае можно быстро выявить серьезные неисправности, которые приводят к явным сбоям в работе силовой установки. Если мастер опытный, тогда одного визуального осмотра будет достаточно для оценки состояния двигателя, ответственных узлов топливоподающей аппаратуры и т.д.

Сделать выводы о состоянии ДВС позволяет воздушный фильтр, звук работы дизеля и ТНВД на ХХ и под нагрузкой, цвет выхлопных газов, внешний вид свечей накала и осмотр других элементов.

  • Во втором случае предполагается, что мастер локализовал проблему, однако необходимо более точное определение неполадки при помощи замеров ряда параметров, которые укажут на отклонения в работе той или иной системы или самого мотора.

Такая диагностика топливной системы дизельных двигателей и других узлов обычно проводится на машинах, где электронная диагностика при помощи сканеров невозможна (старый дизель с механическим ТНВД). В этом случае потребуется снять форсунки для их проверки, замерить компрессию, давления наддува, давление картерных газов, проверить фильтры, фазы газораспределения, установку приводных ремней, провести диагностику калильных свечей и т.д.

Например, замер компрессии в цилиндрах часто проводится, если дизель троит. Троение может указывать как на проблемы в системе питания, так и на неисправности в силовом агрегате. В ситуации, когда компрессия низкая, топливо не горит и цилиндр попросту не работает. Это значит, ремонтировать нужно не элементы топливоподачи, а сам двигатель.

  • Третий способ позволяет выявить сбои и поломки как в электронной системе управления двигателя (ЭСУД), так и целый ряд «механических» проблем. Компьютерная диагностика позволяет проверить работу датчиков и управляющей электроники, а также на основании анализа показаний от датчиков определить другие неисправности.

Что касается диагностики топливной аппаратуры дизельных двигателей, на начальном этапе производится анализ работы «электрической» части форсунок, также компьютерное сканирование определяет показатели температуры, производится замер параметров во время работы вакуумных устройств и т.д.

Далее все собранные показания оцениваются, после чего компьютер выводит данные об ошибках, что позволяет приступить к устранению обнаруженных дефектов. Главным плюсом такой диагностики является простота, скорость работы, а также отсутствие необходимости разбирать двигатель и проводить дополнительные манипуляции.

Советы и рекомендации

Как уже было сказано выше, срок службы дизельного мотора сильно зависит от качества работы системы питания. Нарушения и сбои в работе указной системы не только влияют на эксплуатационные характеристики, но и могут привести к быстрой поломке ДВС.

При этом важно понимать, что ремонт дизеля является достаточно дорогим по сравнению с аналогами на бензине. С учетом вышесказанного становится понятно, что диагностика топливной системы дизельного двигателя должна проводиться не только уже после появления неисправностей, но и в профилактических целях.

Дело в том, что обнаружение проблем на начальной стадии позволяет избежать более серьезных поломок и дорогого ремонта. Обычно незначительные неисправности топливной системы быстро прогрессируют, что приводит к ремонту дизельных форсунок и топливного насоса высокого давления.

На многих СТО и сервисах по обслуживанию и ремонту дизелей имеется необходимое диагностическое оборудование для дизельных двигателей (механотестер, сканер и т.д.), что позволяет быстро проверить дизельную систему питания, производительность ТНВД при частичных и полных нагрузках, замерить давление топлива.

Что в итоге

Итак, хорошо известно, что дизельные двигатели обладают достаточно высоким уровнем надежности. Если владелец регулярно обслуживает мотор и следит за состоянием ДВС, своевременно меняет расходники и оперативно устраняет неисправности, тогда риск неожиданного выхода агрегата из строя минимален.

Как правило, прекращение эксплуатации и незамедлительная диагностика необходимы в таких случаях:

  • когда дизельный мотор начал дымить;
  • возникли малейшие проблемы с запуском;
  • отмечена жесткая и шумная работа;
  • пропала тяга и мощность;
  • агрегат начал троить или работать неустойчиво;

Напоследок также отметим, что мелкие поломки дизеля также возможны, однако они зачастую не могут быстро и значительно повлиять на ресурс и общее состояние агрегата данного типа.

Например, частой неполадкой подобного рода является некорректная работа клапана ЕГР, загрязнение сажевого фильтра, снижение пропускной способности топливного фильтра и т.д. В таких случаях диагностика и последующий ремонт могут быть выполнены самим владельцем автомобиля в условиях гаража.

Завоздушивание топливной системы дизеля: признаки неисправности и диагностика. Как самостоятельно найти место подсоса воздуха, способы решения проблемы.

Черный цвет выхлопа дизельного двигателя. Сажа из выхлопной трубы дизеля, причины неполного сгорания топлива. Определение основных неисправностей.

Синий выхлоп дизельного мотора, неисправности и причины появления сизого выхлопа дизеля. Износ цилиндропоршневой группы, компрессия, подача дизтоплива.

Почему дизельный двигатель дымит белым выхлопом. Белый выхлоп дизеля “на холодную” и после прогрева мотора. Основные причины, диагностика неисправностей.

Появление стуков на разных режимах работы дизеля. Диагностика неисправностей. Характер стуков кривошипно-шатунного механизма, ГРМ, топливной аппаратуры.

Признаки неработающего цилиндра (троение и вибрации) дизельного двигателя. Поиск неисправности: компрессия, дизельные форсунки, свечи накала, ТНВД и другие.

Добавить комментарий