Типы двигателей автомобилей – принципы работы, виды топлива + видео

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления — обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска — осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка — выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления — состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное — реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе — наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Бензиновый двигатель: устройство,принцип работы,виды ,фото,видео.

Бензиновый двигатель – особый вид поршневого ДВС (двигателя внутреннего сгорания), в котором воспламенение ТС (смеси топлива и воздуха) в цилиндрах осуществляется принудительно при помощи электрической искры, а в качестве топлива используется бензин.

Виды бензиновых двигателей

Современные бензиновые двигатели можно классифицировать по нескольким категориям.

  1. По количеству цилиндров – с одним цилиндром, двумя цилиндрами и несколькими цилиндрами.
  2. По расположению цилиндров:
    • рядные двигатели (цилиндры расположены строго в ряд наклонным или вертикальным способом);
    • V-образные двигатели (цилиндры расположены под углом);
    • W-образные двигатели (цилиндры располагаются в четыре ряда под углом с коленвалом)
    • оппозитные двигатели (цилиндры расположены под углом 180 градусов)
  3. По способу получения топливной смеси – инжекторные, карбюраторные.
  4. По типу смазки — раздельные (масло находится только в картере), смешанные (масло смешивается с топливом).
  5. По методу охлаждения — охлаждение жидкостью, охлаждение воздухом.
  6. По типу циклов – двухтактные, четырехтактные.
  7. По типу подачи воздушной смеси в цилиндры — с наддувом, без наддува.

Устройство бензо двигателя

Бензиновый двигатель относится к классу двигателей внутреннего сгорания, в которых предварительно сжатая топливовоздушная смесь в цилиндрах поджигается при помощи искры. Управление мощностью в такого рода двигателях происходит посредством регулирования потока воздуха, попадающего в них, с помощью дроссельной заслонки.

Дроссельная заслонка (дроссель, дроссельный клапан) – это устройство, проходное сечение которого значительно меньше сечения подводящего трубопровода. Это устройство служит для регулирования количества подаваемого в камеру сгорания двигателя топливо-воздушной смеси.

Карбюраторная дроссельная заслонка является одним из видов дросселя: ее задача заключается в регулировании поступления горючей смеси в цилиндр двигателя (рис. 13).

Здесь рабочим органом является пластина, закрепленная на вращающейся оси, которая помещена в трубу, в которой протекает регулируемая среда. Этот механизм в просторечии принято именовать «газом».

Управление дросселем в автомобиле происходит с места водителя, при этом обычно предусматриваются два возможных способа привода: от руки рычажком или кнопкой (такой способ используется, например, в автомобилях для инвалидов) либо (что более распространено) с помощью педали, нажимаемой ногой водителя.

Рисунок 13. Дроссельная заслонка

КЛАССИФИКАЦИЯ БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ

Существует определенная классификация бензиновых двигателей по различным параметрам.

✓ По способу смесеобразования. Существуют двигатели с внешним смесеобразованием, в которых данный процесс происходит вне цилиндра, и двигатели с внутренним смесеобразованием, в которых процесс происходит соответственно внутри цилиндра – это двигатели с непосредственным впрыском.

✓ По способу осуществления рабочего цикла выделяют двигатели четырехтактные и двухтактные. И у тех, и у других существуют свои преимущества и недостатки. Так, например, двухтактные двигатели обладают большей мощностью на единицу объема по сравнению с четырехтактными, однако коэффициент полезного действия (КПД) у них ниже. Двухтактные двигатели используются в основном там, где на первом месте стоит проблема малого размера двигателя, а не эффективность и высокая мощность – в мотоциклах, небольших автомобилях и т. д. Четырехтактные двигатели более распространены и используются в абсолютном большинстве транспортных средств.

✓ По числу цилиндров бывают одноцилиндровые, двухцилиндровые и многоцилиндровые двигатели.

✓ По расположению цилиндров выделяют двигатели с вертикальным или наклонным расположением цилиндров в один ряд (так называемые «рядные» двигатели); V-образные с расположением цилиндров под углом (если они расположены под углом 180°, то это двигатель с противолежащими цилиндрами – оппозитный двигатель).

✓ По типу охлаждения существуют двигатели воздушного (в основном устаревшие модели) и жидкостного охлаждения.

✓ По типу смазки существуют раздельный (когда масло находится в картере) и смешанный (когда масло смешивается с топливом) типы.

✓ По способу приготовления рабочей смеси. По этому параметру выделяются карбюраторные и инжекторные двигатели.

В настоящее время последние постепенно вытесняют первые.

ПРИНЦИП РАБОТЫ ЧЕТЫРЕХТАКТНОГО ДВИГАТЕЛЯ

Как уже следует из самого названия, рабочий цикл четырехтактного двигателя основывается на четырех этапах – тактах.

Первым из этих этапов является впуск. Он характеризуется тем, что в течение этого такта происходит опускание поршня из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ).

Впуск происходит за счет того, что кулачки распределительного вала открывают впускной клапан, через который в цилиндр засасывается свежая порция воздушно-топливной смеси (рис. 14).

Рисунок 14. Принцип работы четырехтактного двигателя

Вторым тактом является сжатие. На этом этапе поршень, наоборот, проходит путь из НМТ в ВМТ; при этом рабочая смесь, полученная на первом этапе, сжимается. В этот момент происходит резкое повышение температуры рабочей жидкости. Главнейшим параметром на данном этапе является степень сжатия. Важность его определяется тем, что, чем выше степень сжатия, тем выше экономичность двигателя. Стоит однако подчеркнуть, что для двигателя с большой степенью сжатия требуется топливо с большим октановым числом, а оно всегда стоит дороже.

На третьем этапе во время рабочего хода поршня происходит сгорание топлива и расширение рабочей смеси.

Под степенью сжатия понимается отношение рабочего объема двигателя в НМТ к объему камеры сгорания в ВМТ.

С помощью искры от свечи зажигания поджигается топливовоздушная смесь, причем это происходит незадолго до конца цикла сжатия. В процессе прохождения поршня из ВМТ в НМТ топливо сгорает. Под воздействием тепла, выработанного при сгорании топлива, рабочая смесь расширяется и толкает поршень. Здесь одним из важнейших параметров является угол опережения зажигания, под которым понимается степень недоворота коленчатого вала до ВМТ в момент поджигания смеси. Дело в том, что давление газов должно достигнуть максимальной величины именно в тот момент, когда поршень находится в ВМТ, для чего и необходимо опережение зажигания.

Для регулировки угла опережения в современных двигателях используется электроника, в то время как в старых образцах это происходит с помощью механики.

В целом все это приводит к поставленной задаче – максимально эффективному использованию сгоревшего топлива. А учитывая то обстоятельство, что сгорание топлива занимает практически фиксированное время, то для повышения эффективности двигателя необходимо увеличить угол опережения зажигания при повышении оборотов.

Выпуск – четвертый такт. Работа на данном этапе происходит следующим образом: после выхода рабочего цикла из НМТ открывается выпускной клапан, в этот момент движущийся вверх поршень выталкивает отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл повторяется снова.

Однако стоит иметь в виду, что для начала следующего процесса (например, впуска) не обязательно должен быть полностью завершен предшествующий процесс (например, выпуск).

Подобное положение, когда открытыми оказываются одновременно оба клапана (впускной и выпускной), называется перекрытием клапанов. Более того, такое положение бывает специально предусмотрено и может служить для лучшего наполнения цилиндров горючей смесью и лучшей очистки цилиндров от отработанных газов.

К преимуществам четырехтактного двигателя можно отнести следующие характеристики: большой ресурс, большая (по сравнению с другими двигателями) экономичность, более чистый выхлоп, меньший шум, к тому же не требуется выхлопная система.

ПРИНЦИП РАБОТЫ ДВУХТАКТНОГО ДВИГАТЕЛЯ

В отличие от четырехтактного двигателя рабочий цикл двухтактного происходит в течение одного оборота коленчатого вала.

Из четырех тактов предыдущего двигателя в данном случае присутствуют только два – сжатие и расширение. Два других цикла – впуск и выпуск – заменены в таком двигателе процессом продувки цилиндра вблизи НМТ поршня. В этот момент свежая струя рабочей смеси вытесняет отработанные газы из цилиндра.

Читайте также:  Балансировка колес: что это и зачем, как часто нужно делать, необходимое оборудование и виды дисбаланса

Если остановиться на этом подробнее, то рабочий цикл двухтактного двигателя выглядит следующим образом.

В то время когда поршень двигается вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно с этим поршень, движущийся вверх, создает разрежение в кривошипной камере (рис. 15).

Рисунок 15. Двухтактный двигатель: 1 – выпускной клапан; 2 – форсунка; 3 – продувочный насос; 4 – продувочные (впускные) окна

Под воздействием создаваемого разрежения клапан впускного коллектора открывается и свежая порция топливовоздушной смеси (обычно с добавлением масла) засасывается в кривошипную камеру.

В ходе движения поршня вниз повышается давление в кривошипной камере и клапан закрывается. Сам же процесс сгорания и расширения рабочей смеси происходит точно так же, как и в четырехтактном двигателе. Однако в момент движения поршня вниз открывается так называемое впускное окно (т. е. поршень перестает перекрывать его). Через это окно выхлопные газы, все еще находящиеся под большим давлением, устремляются в выпускной коллектор. Через некоторое время таким же образом поршень открывает впускное окно, которое расположено со стороны впускного коллек тора.

В это время свежая смесь выталкивается из кривошипной камеры идущим вниз поршнем и попадает в рабочую камеру двигателя, где окончательно вытесняет отработанные газы. Часть рабочей смеси при этом выбрасывается в выпускной коллектор. Во время движения поршня вверх часть свежей смеси, которая была вытолкнута из выпускного коллектора, засасывается обратно в кривошипную камеру.

При одинаковом объеме цилиндра двухтактный двигатель должен иметь почти в два раза большую мощность, чем четырехтактный. Однако это потенциальное преимущество далеко не всегда возможно полностью реализовать. Прежде всего это затрудняется недостаточной эффективностью продувки по сравнению с нормальным впуском и выпуском. Но все-таки при одинаковом литраже двухтактный двигатель мощнее в 1,5 или 1,8 раза.

Неотъемлемое преимущество двухтактного двигателя перед четырехтактным заключается в его компактных габаритах из-за отсутствия громоздкой системы клапанов и распределительного вала. К преимуществам двухтактного двигателя можно также отнести отсутствие громоздких систем смазки и газораспределения, большую мощность в пересчете на 1 л рабочего объема, простоту и дешевизну изготовления.

Преимущества и недостатки бензинового и дизельного двигателя

Если судить о преимуществах и недостатках бензинового и дизельного двигателя, то можно сразу сказать, что каждый из этих видов имеет свои плюсы и минусы, по которым нельзя назвать один двигатель лучше другого. И поэтому выбор одного из варианта двигателя зависит от конкретных потребностей и предпочтений автолюбителя. Итак, рассмотрим отдельно основные плюсы и минусы каждого из двигателей: К основным плюсам бензинового двигателя относительно дизельного можно отнести более удобную эксплуатацию – не требует перехода на зимнее топливо, более низкий уровень шума, большую экологичность, а так же большую удельную мощность объема, то есть достижение большей мощности при малых объемах двигателя.

Рассуждая о плюсах дизельного двигателя можно выделить его экономичность, которая достигается за счет более низкой цены на дизель, относительно бензина и более низкого потребления топлива. Нельзя не отметить, что к плюсам двигателя этого вида можно отнести более высокий крутящий момент, чем у бензинового двигателя, что очень полезно для грузовых автомобилей. А так же меньшую пожароопасность, благодаря тому, что дизельное топливо подвержено меньшей способности к возгоранию.

Карбюраторные и инжекторные двигатели.

Приготовление горючей смеси в карбюраторных двигателях происходит в специальном устройстве – карбюраторе, в котором осуществляется процесс смешивания топлива с потоком воздуха, за счет искусственной конвекции, создаваемой аэродинамическими силами потока воздуха, засасываемого двигателем.

В инжекторных двигателях процесс смесеобразования организован иначе. Топливо впрыскивается в воздушный поток, через специальные форсунки. Дозируется подача топлива электронным блоком управления, или (в более старых автомобилях) механической системой.

Первые инжекторные двигатели появились в 1997 году. Их внедрению способствовала корпорация OMC, которая выпустила двигатель, сконструированный с использованием технологии FICHT. Ключевым фактором этой технологии было использование специальных инжекторов, которые позволяли впрыскивать топливо сразу в камеру сгорания. Это революционное решение, в купе с использованием современного бортового компьютера, сделало возможным точное дозирование топлива, при перемещении поршня. В полость коленчатого вала впрыскивается чистое масло, без примесей топлива. Благодаря новой технологии конструкторам удалось изобрести двухтактный двигатель, который не уступал по экономичности карбюраторному четырехтактному двигателю, а также был компактным и легким.

Из-за новых стандартов на чистоту выхлопа, автомобильным производителям пришлось перейти от классических карбюраторных двигателей к инжекторным, а также установить современные нейтрализаторы выхлопных газов. Для функционирования катализатора необходим постоянный состав выхлопного газа, который поддерживается системой впрыска топлива. Обязательной составляющей катализатора является датчик содержания кислорода, благодаря которому отслеживается точное соотношение кислорода, недоокисленных продуктов сгорания топлива и оксидов азота, которые сможет нейтрализовать катализатор.

Типы автомобильных двигателей

Двигатель – это сердце автомобиля, он является движущей силой машины. Он служит для преобразования энергии топлива в механическую энергию, которая используется для выполнения полезной работы.

Классификация двигателей по типу

Принцип работы силового агрегата основывается на преобразования тепловой энергии в механическую. Повторяющиеся процессы в моторе являют собой рабочий цикл двигателя. Зависимо от того, сколько поршень делает ходов, двигатели делятся на четырехтактные и двухтактные. Двигатели внутреннего сгорания, которые применяются в машинах, работают по 4-тактному циклу. Сюда входит впуск топлива, рабочий ход (туда-назад) и выпуск отработанных газов.

В двухтактном моторе за один цикл происходит всего 2 хода поршня: рабочий ход и сжатие. Наполнение цилиндров и очистка происходит во время этих 2-х тактов. У двигателей этого типа есть существенные недостатки, например высокий уровень выброса выхлопных газов. Главный минус – это высокий расход топлива, из-за чего двухтактные двигатели не используются в современных автомобилях.

Инжекторный тип двигателя

Ижекторный двигатель работает немного иначе: топливо подается в воздушную среду способом мелкого впрыска. Под давлением через форсунку распыляется горючая жидкость, что значительно снижает расход топлива, потому как количество дозируют специальные устройства. По этой причине инжекторные двигатели более экономичные, а оптимальная пропорция горючей смеси позволяет увеличить чистоту выхлопа и повысить КПД силового агрегата.

Инжекторные двигатели делятся на механические и электронные. В механическом двигателе устанавливается дозировка топлива с помощью рычагов, а в электронном силовом агрегате применяется специальная система управления дозировкой топлива. При использовании таких систем более тщательно перегорает топливо и снижаются вредные выбросы.

Тип двигателя карбюраторный

Бензин, который проходит через топливную систему, попадает в карбюратор или впускной коллектор. В него же поступает воздух, который в дальнейшем смешивается с топливом и получается готовая смесь. Она подается в цилиндры и там поджигается искрой, которую дают свечи зажигания.

Автомобили с карбюраторным типом двигателем на данный момент считаются устаревшими. Сейчас широко используются двигатели инжекторного типа. Распыление топлива производится форсунками или через впускной коллектор.

Дизельный тип двигателя

Отдельного внимания достойны дизельные двигатели. Их принцип работы основывается на воспламенении рабочей смеси при сжатии. Когда втягивается воздух, процесс происходит под высоким давлением, в результате чего смесь самовоспламеняется. После воспламенения происходит рабочий ход поршня, который потом вытесняет отработавшие газы.

Данный тип двигателя имеет более низкий расход топлива и небольшое количество вредных веществ в выбросах. КПД этого силового агрегата тоже намного выше. Дизельные двигатели сейчас продолжают совершенствоваться и даже заморозки уже не помеха к запуску мотора.

Разные виды двигателей, работающих на дизельном топливе, отличаются характеристиками, которые зависят от времени года. Эти силовые агрегаты не имеют системы зажигания, потому как топливо загорается из-за высокого давления, что дает движение поршня.

Видео типы двигателей

KadetVital32 › Блог › ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ.

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.
Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.
КОНСТРУКЦИЯ.

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
Поршни и свечи дизеля
Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

ТИПЫ КАМЕР СГОРАНИЯ.

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.
Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.
Камеры сгорания дизелей
При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.
Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.
Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.
Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.
Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Читайте также:  Рено Логан — замена помпы и патрубка в ней + видео

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизеля.

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.
Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название — рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.
Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.
Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима. Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.
Кардинально изменить ситуацию могла только оптимизация процесса горения топливо — воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом. В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.
Насос-форсунка
В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.
Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок. Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система Common Rail.

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска. Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам. Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок — высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля. Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха — интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя — в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности. В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.
Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Виды двигателей по типу топлива

Изобретение двигателей внутреннего сгорания (ДВС) можно назвать по-настоящему эпохальным событием, поскольку это устройство перевернуло весь мир, ускорив развитие человечества до невозможности. Все ключевые технологии внутреннего сгорания (на бензине и дизтопливе, а потом и газообразных смесях), которые применяются в нынешних автомобилях, были открыты в конце 19 века, либо в первой половине 20-го. С тех пор технологии видоизменялись и бесконечно улучшались, но не менялся принцип действия.

Двигатель внутреннего сгорания использует принцип преобразования энергии, выделяемой при сгорании топлива, в механическую энергию, которая и служит движущей силой автомобиля. Этот принцип построен на том, что в соединении с воздухом жидкое топливо образует смесь, которая сгорает в специальной камере.

Сгорая, эта смесь вызывает высокое давление, которое толкает поршень-вращающий вал посредством кривошипно-шатунного механизма. Далее через этот механизм механическая энергия передается на трансмиссию, а оттуда на колеса.

В легковой автомобильной промышленности применяются такие виды двигателей:

Также они классифицируются по количеству и расположению цилиндров, способу впрыскивания и формирования смеси и прочим критериям.

Чтобы осуществить запуск ДВС, бензиновые механизмы оснащены стартером – электрическим двигателем, который поворачивает коленвал. Если движитель дизельный, то в нем в качестве стартера используется вспомогательный ДВС маленьких размеров.

Бензиновые двигатели

Бензиновый ДВС – это наиболее простой в изготовлении и эксплуатации тип двигателей, который получил широчайшее распространение в легковых автомобилях. Как понятно из названия, в качестве топлива для этого механизма служит бензин. Он подается с помощью специального насоса по топливной системе через фильтры в карбюратор или инжектор, а оттуда топливная взвесь попадает в камеру сгорания, где сжимается под воздействием цилиндра и воспламеняется от искры, генерируемой свечой.

Стоит отметить, что карбюраторная схема впрыска является морально устаревшей и не соответствует современным экологическим и экономическим нормам, а потому не применяется. Вместо карбюраторов используются инжекторные системы впрыска. Они позволяют производить более тщательную дозировку, впрыск и сгорание топлива, давая больше КПД. Также это позволяет максимально уменьшить выброс продуктов сгорания в атмосферу.

Такие системы производят впрыск топливной смеси через форсунку непосредственно в цилиндр либо в специальный впускной коллектор для смеси. Также инжекторы разделяются на 2 типа:

В механических инжекторах используются система рычагов плужерного типа, а задача по контролю подачи топливной смеси равномерно разделена между механизмом и электронным блоком управления. В электронных устройствах процесс смешения и впрыскивания топлива полностью контролируется электронным блоком управления.

Дизельные двигатели

Дизельные двигатели изначально использовались в тяжелом автомобиле- и тракторостроении. Их размеры и мощность не позволяли ставить эти массивные агрегаты куда-либо, кроме шасси трактора, танка или грузовика.

Но во второй половине 50-х годов появились первые миниатюризованные дизели с конструкцией, адаптированной под установку на легковой автомобиль. С тех пор это направление в двигателестроении непрестанно развивалось, но медленно – из-за сложностей в производстве, конструировании и обслуживании легковых дизелей.

Дизельные ДВС работают на специальном дизтопливе. Они не имеют системы зажигания, поскольку топливная смесь, которая попадает в камеру сгорания через форсунки, воспламеняется под воздействием высокого давления. Температура и давление, получаемые при сгорании, вращают поршневую группу. Опускаясь, поршень, снова формирует давление и взрыв смеси, что приводит к самоподдерживающемуся процессу. Узнать больше о принципе запуска и действиях таких механизмов можно на сайте Apollo Motors.

Читайте также:  Ремонт стоек амортизаторов своими руками

Газовые двигатели

Такие двигатели в качестве топлива используют сжатый, сжиженный газ природного происхождения. Происхождение подобных механизмов было продиктовано растущими экологическими и экономическими требованиями.

Газовая смесь хранится под давлением в специальных баллонах, откуда, минуя испаритель, подается на редуктор, где ее давление ослабевает. Из редуктора, конструкция которого схожа с инжектором, происходит впрыск в камеру сгорания, где под воздействием искры газ воспламеняется, толкая поршень.

Большинство современных бензиновых ДВС можно переделать под использование газа, что позволяет существенно сэкономить на поездках. Наборы для перехода на газ выпускает множество производителей.

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Добавить комментарий