Кнопка датчика

Сенсорные кнопки в Ардуино

В этой статье мы поговорим о сенсорных кнопках в ардуино. С помощью этого несложного и недорогого компонента можно создавать простые и очень эффектные проекты. Чаще всего такие кнопки используются для создания всевозможных удобных сенсорных интерфейсов, например в системах умного дома. Давайте узнаем, как можно подключать сенсорные кнопки к ардуино, напишем простой скетч и обязательно рассмотрим принцип их работы.

Сенсорная кнопка

Ни для кого не секрет, что прогресс не стоит на месте. Постоянно появляются новые технологии, совершенствуются старые. Сенсорные экраны появились совсем недавно (по меркам человечества), но уже прочно вошли в нашу повседневную жизнь. Телефоны, телевизоры, терминалы и прочие в большинстве своём используют «беcкнопочные» технологии. В кавычках это слово по той причине, что они всё-таки используют кнопки, только сенсорные. О них в данной статье как раз и пойдёт речь, а если точнее, о Touch module для Arduino.

Принцип работы сенсорных кнопок

Модули с сенсорными кнопками в большинстве своём используют проекционно-ёмкостные сенсорные экраны (https://ru.wikipedia.org/wiki/Сенсорный_экран). Если не вдаваться в пространственные объяснения их работы, для регистрации нажатия используется вычисление изменения ёмкости конденсатора (электрической цепи), при этом важной особенностью является возможность выставлять различную начальную ёмкость, в чём мы убедимся далее.

Человеческое тело обладает некоторой электрической емкостью, а следовательно, и невысоким реактивным сопротивлением для переменного электрического тока. Если прикоснуться пальцем либо каким-либо электропроводящим объектом, то через них потечет небольшой ток утечки от устройства. Специальный чип определяет эту утечку и подаёт сигнал о нажатии кнопки. Плюсами данной технологии являются: относительная долговечность, слабое влияние загрязнений и устойчивость к попаданию воды.

Сенсорные или механические кнопки

+ Сенсорная кнопка «ощущает» нажатие даже через небольшой слой неметаллического материала, что обеспечивает разнообразие в использовании её во всевозможных проектах.

+ Из предыдущего пункта вытекает и этот – возможность использовать сенсорную кнопку внутри корпуса повышает привлекательность проекта, что не влияет на функционал, но достаточно важно в повседневной жизни, чтобы не обращать на это внимание.

+ Стабильное функционирование, которое выражается отсутствием подвижных частей и частой калибровкой (о чём будет сказано ниже). Вам не придется беспокоиться о дребезге кнопок, возникающем при использовании механического собрата, что существенно облегчит жизнь начинающему ардуинщику. Поэтому ещё один плюс, пусть и не для всех – простота при работе.

Из минусов можно отметить следущее:

  • Сенсорные кнопки плохо работают при минусовых температурах, поэтому они непригодны для использования за пределами помещений.
  • Высокое потребление электричества, вызванное необходимостью постоянно поддерживать одинаковую ёмкость.
  • Сенсорная кнопка не работает при нажатии её рукой в перчатке либо плохо проводящим электричество объектом

Обзор сенсорных кнопок

Прежде чем говорить непосредственно о работе с модулем, нужно определиться с тем, какую именно модель купить для использования. Рассмотрим несколько вариантов различных компаний:

1. Troyka touch sensor

Время отклика: 80мс (в режиме энергопотребления) и 10мс (в высокоскоростном режиме)

Максимальная толщина диэлектрика для нормальной работы: 4 мм

Размер: 25Х25 мм

Напряжение питания: 3–5 В

Цена: 390 рублей

2. Grove Touch Sensor

Время отклика: 220 мс и 80 мс

Максимальная толщина диэлектрика для нормальной работы: 2 мм

Размер: 20Х20 мм

Напряжение питания: 2–5 В

Цена: 229 рублей

3. TTP223B Arduino Digital Touch Sensor

Время отклика: 220 мс и 60 мс

Размер: 24Х24 мм

Напряжение питания: 2–5 В

Цена: 150 рублей

4. Keyestudio touch module

Размер: 30Х20 мм

Напряжение питания: 3.3–5 В

Цена: 270 рублей

Подключение сенсорной кнопки к Ардуино

Для использования сенсорной кнопки, как, впрочем, и всех остальных модулей и датчиков, её необходимо подключить к какой-либо плате arduino. В большинстве случаев используются стандартные модули с тремя контактами: питание, сигнал и земля. Их расположения от модели к модели меняются, на схеме они отображены согласно недавнему перечислению (сенсорная кнопка заменена переключателем по причине её отсутствии в Tincercad):

Важный момент: нужно помнить, сенсорной кнопке требуется в среднем полусекундная калибровка во время каждого запуска, что позволяет не беспокоиться о лишних шумах, которые, несомненно, возникали бы из-за различного положения кнопки в проектах. Поэтому не стоит сразу после запуска нажимать на кнопку, т.к. после этого наиболее вероятна некорректная работа устройства.

Сенсорный модуль, по своей сути аналогичен цифровой кнопке. Пока кнопка нажата, датчик отдаёт логическую единицу, а если нет, то логический ноль.

Проекты с использованием сенсорной кнопки

Начнём с простого: при нажатии на кнопку загорается встроенный светодиод.

Теперь усложним задачу: Нажатием на кнопку изменяется режим работы светодиода.

Заключение

В этой статье мы с вами рассмотрели принцип работы и схему подключения сенсорной кнопки к платам Arduino. С точки зрения программной модели никаких особенных отличий при работе с таким видом кнопок нет. Вы просто анализируете уровень входящего сигнала и принимаете решение о своем действии. С учетом того, что сами модули сенсорных кнопок достаточно дешевы и доступны в большом количестве интернет-магазинов, добавить такой интересный и современный интерфейс к своему ардуино-проекту на составит никакого труда.

Сенсорная кнопка (Troyka-модуль)

  • Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6.
  • При оформлении до 15:00 в будний день заказ можно забрать после 17:00 в тот же день, иначе — на следующий будний день после 17:00. Мы позвоним и подтвердим готовность заказа.
  • Получить заказ можно с 10:00 до 21:00 без выходных после его готовности. Заказ будет ждать вас 3 рабочих дня. Если хотите продлить срок хранения, просто напишите или позвоните.
  • Запишите номер своего заказа перед визитом. Он необходим при получении.
  • Чтобы к нам пройти, предъявите на проходной паспорт, скажите, что вы в Амперку, и поднимитесь на лифте на 3-й этаж.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • бесплатно

Доставка курьером по Москве

  • Доставляем на следующий день при заказе до 20:00, иначе — через день.
  • Курьеры работают с понедельника по субботу, с 10:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • бесплатно

Доставка в пункт самовывоза

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint.
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • Доставляем через день при заказе до 20:00, иначе — через два дня.
  • Курьеры работают с понедельника по субботу, с 11:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 350 ₽

Доставка в пункт самовывоза

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint.
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint.
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • Доставка осуществляется до ближайшего почтового отделения в любом населённом пункте России.
  • Тариф и сроки доставки диктует «Почта России». В среднем, время ожидания составляет 2 недели.
  • Мы передаём заказ Почте России в течение двух рабочих дней.
  • Оплатить заказ можно наличными при получении (наложенный платёж) или же онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время заказа и в среднем должна составить около 400 рублей.
  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4–5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400–800 рублей для России и 1500–2000 рублей для стран СНГ.
  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4–5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400–800 рублей для России и 1500–2000 рублей для стран СНГ.
Читайте также:  Втулка рулевой рейки – меняем самостоятельно + Видео

Товары из офиса нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6.

Товары из магазина-мастерской нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Магазин-мастерская находится в трёх минутах пешком от метро Лиговский Проспект, на территории пространства «Лофт Проект Этажи», по адресу Лиговский проспект 74Д.

Ёмкостный датчик прикосновения работает как обычная кнопка, но в нём нет подвижных частей. Кнопка почувствует «нажатие» сквозь корпус устройства и сработает как бесконтактный концевик в проектах домашней автоматизации.

Сенсор работает через неметаллические материалы — пластмассу, картон, фанеру или стекло. Эту особенность можно использовать для создания скрытых или защищённых элементов управления.

Поместите модуль в герметичный корпус или спрячьте под лицевую панель устройства — кнопка почуствует приближение пальца даже через четырёхмиллиметровый слой диэлектрика.

Использование в качестве «кнопки» — не единственный вариант использования ёмкостных датчиков. Они отлично подойдут для контроля уровня воды в пластиковой бочке или стеклянном аквариуме.

Что на борту

Система определения прикосновения состоит из чувствительного элемента, блока измерения ёмкости датчика и логической схемы, реагирующей на изменение ёмкости при приближении объекта.

В качестве чувствительного элемента используется токопроводящий контур на лицевой части модуля.

Логика построена на базе микросхемы AT42QT1010. Она отвечает за автоматическую калибровку датчика. Калибровка занимает примерно полсекунды и выполняется сразу после появления питания на модуле. Кроме того, микросхема фильтрует значения, компенсирует дрейф ёмкостного датчика и корректирует работу устройства при изменении температуры и влажности окружающей среды.

При каждом срабатывании сенсора загорается яркий красный светодиод. Это поможет при отладке проекта и пригодится для создания интерактивных панелей управления.

Подключение

Сенсорный модуль по своей сути аналогичен цифровой кнопке. Пока кнопка нажата, датчик отдаёт логическую единицу; когда кнопка не нажата — логический ноль.

В простом варианте модуль подключается к управляющей электронике как простая кнопка — одним трёхпроводным шлейфом.

Для этого используется левая группа контактов:

  • Контакт S — сигнальный пин, подключаемый к цифровому входу контроллера.
  • Контакт V — питание. Подключается к линии питания 3,3—5 В.
  • Контакт G — подключается к земле.

В правой группе контактов используется только один пин — M. Он переключает режимы работы модуля. Две оставшиеся ноги используются для надёжной фиксации модуля на Troyka Slot Shield.

При подключении к Arduino удобно использовать Troyka Shield. Шлейфы для подключения лежат в коробке с сенсором.

Пины модуля сделаны с шагом 2,54 мм, поэтому с ним будет удобно работать на breadboard’ах.

Переключение режима работы

По умолчанию модуль работает в режиме пониженного энергопотребления. Опрос датчика проводится раз в 80 миллисекунд. Это существенно экономит энергию аккумуляторов.

Если вам требуется увеличить отзывчивость интерфейса, подключите пин М к контроллеру и подайте на него логическую единицу. Модуль переключится в режим высокоскоростной обработки данных, интервал опроса сенсора уменьшится до 10 миллисекунд.

Простая сенсорная кнопка

Транзисторы любые NPN структуры: КТ315, КТ3102 или BC547 или любой другой. Резисторы 0,125-0,25 Ватт. Светодиод любого цвета, но лучше красный, так как падение напряжение падение у него минимальное. Питание 5 вольт, больше меньше можно и меньше тоже.

Все компоненты были компактно соединены между собой на миниатюрной печатной плате, которую можно сделать просто вырезав лишнюю медь резаком оставив таким способом остроугольные многоугольники. Детали, использованные для поверхностного монтажа, транзисторы в sot-26 npn, резисторы 0805, перемычки – кусочки провода, вместо них, если есть берите крупный 2512 резисторы с нулевым (условно) сопротивлением. Сенсорное устройство работает сразу, без настройки.

Объяснение работы схемы

Дотрагиваясь до базы транзистора Q3 вы наводками открываете его, вследствие чего через его КЭ и резистор 1 Мом течет ток, который открывает следующий полупроводник Q2, тот открываясь открывает Q3, который уже управляет светодиодом, открываясь через его КЭ течет ток, от минуса идет к катоду светодиода, а к аноду он уже подключен. Резистор 220 Ом здесь “токоограничительный”, на нём падает лишнее напряжение, что защищает диод от деградирования кристалла и полного выхода из строя LED1

Ну вот горит светодиод по касанию пальца – и что? А вот то, что вместо этого светодиода ставим реле и теперь мы можем управлять почти любой нагрузкой, в зависимости от характеристик применяемого реле. Ставим мощную лампу накаливания, подключенную к сети, а в разрыв этой цепи контакты реле. Теперь при нажатии, а точнее касании сенсора лампа светит.

Также организовать включение/отключение нагрузки можно с помощью оптопары, если отсутствует реле, тогда также будет гальваническая развязка. Эта прекрасная вещь состоит из светодиода и фототранзистора, когда первый светит, то это открывает транзистор и через его КЭ может течь ток. Включаем нужные выводы оптрона в схему сенсора вместо светодиода LED1, а остальные два в разрыв источника питания и любой нагрузки. Эту деталь можно изъять из зарядок от телефона. Возьмите, к примеру, PC-17L1.

Читайте также:  Как проверить качество моторного масла и отличить подделку от оригинала - зик, shell и другие марки

Чуть ниже вы видите дополнение к основной схеме, где показано как нужно подключать оптопару к схеме сенсора, также добавлен один транзистор, это нужно для того чтобы вы могли подключать весомую нагрузку, а не просто светодиоды на 20 mA.

Еще вместо реле и оптопары возможно применение двух npn транзисторов. Я так и сделал, схему вы видите. Работает это так: Q5 всегда должен быть открыт, через резистор 10 кОм, но через КЭ открытого Q4 на базу Q5 поступает “минус” и из-за этого он закрыт. Когда же вы касаетесь сенсора – то минус поступает через открытый Q1 на базу Q4 и закрывает его, теперь уж ничто не мешает Q5 оставаться открытым – нагрузка работает, а в моем случае мощный 1 Ватт светодиод ярко светит.

Так это выглядит в собранном состоянии.

Сенсор не имеет фиксации, дотронулись – светит, отпустили – не светит. Коль желаете сделать фиксацию – просто добавьте в схему триггер, например, на микросхеме КМ555ТМ2 или любой другой (можно даже на таймере 555 реализовать это). С добавление триггерной системы при касании к сенсору нагрузка будет включена до тех пор, пока не произойдет следующее касание или исчезнет питание схемы.

На практике это можно применить для быстрого включения и отключения освещения в комнате. Очень удобно, коснулся небольшого чувствительного участка, и комната освещена, второе касание отключит свет. Небольшое количество энергии будет теряться, но этим можно пренебречь.

Схема работает, но из-за своей простоты далеко не идеально. Если сенсор большой, то схема может срабатывать даже тогда, когда вы еще не дотронулись до него, также если вы рукой расчешете волосы возле датчика светодиод также может загореться. Выход из этой ситуации простой – миниатюрный сенсорный датчик.

Как уже говорилось – открытие Q3 происходит за счет наводок, видеть это можно на видео, светодиод светит не постоянно, а подмигивает с большой частотой, но это хорошо заметно при съёмки.

Яркость работающего диода не велика, если вы дотрагиваетесь только до базы третьего транзистора, но стоит вам коснуться еще и плюса питания, то ваше тело выступит в роле резистора и транзистор Q3 перейдет в насыщение. Но при таком раскладе для некоторых потеряется смысл сенсора.

Эта схема очень проста и предназначена лишь для понимания принципа работы электронных компонентов, применять в серьезных конструкциях не рекомендуется.


Урок 3. TTP223 сенсорная кнопка схема подключения к Arduino

Сенсорные кнопки устроенны так, что они реагируют на изменение емкости. Изначально кнопка имеет определенную емкость, которая разная у каждой модели данных датчиков.

Так как тело человека обладает некоторой емкостью и небольшим реактивным сопротивлением. Если прикоснуться пальцем какого-нибудь проводника, то по нему потечет ток утечки. В сенсорных кнопка установлен чип (в нашем случае TTP223), который определяет данную утечку. При достижении определенного значения происходит срабатывания.

Технические характеристики TTP223

  • Напряжение питания постоянного тока, В: 2 – 5.5
  • Потребляемый ток (в покое, при VCC= 3 В), мкА: 70
  • Максимальное время срабатывания (при VCC= 3 В), мС: 220
  • Габаритный размер платы, мм: 11×15

Подключим сенсорную кнопку TTP223 в Arduino

Как подключить кнопку к Arduino я рассказывал в Урок1 – Подключение кнопки и светодиода кплате Arduino

Для подключения сенсорной кнопки не нужно дополнительно ставить резистор потягивающий резистор. Все еже реализовано в самой кнопке. И контакт не будет висеть в воздухе.

Проверим будет или нет работать код из урока подключения кнопки к Arduino.

Как видим у нас все работает аналогично обычной кнопке.

При этом есть еще один бонус от использования сенсорной кнопки. Нам не нужно устранять дребезг кнопки. Если вы не знаете что это смотрите : Урок2. Нажатие кнопки без ложных срабатываний.Устраняем дребезг кнопки

Также данную сенсорную кнопку можно сконфигурирован для работы в одном из 4 режимов для этого нужно спаять перемычки А и В на плате:

A

B

Режимы

На время касания на выходе “1”

На время касания на выходе “0”

режим триггера, состояние выхода после касания – “0”

режим триггера, состояние выхода после касания – “1”


Как мы видим если спаять перемычки А и В. Мы сконфигурирован сенсорную кнопку как логический ключ. И не меняя программу мы можем включать светодиод и выключать при нажатии на сенсорную кнопку TTP223 .

Давайте подключим реле, вместо светодиода, не меняя программу.

Как видим, реле также отлично работает включается и выключается.

Если мы можем сконфигурировать кнопку так, что она будет работать как триггер. При нажатии подать положительный сигнал на выход. Для управления простыми устройствами такими как светодиод и реле. Из схемы можно убрать Arduino.

Для подачи напряжения буду использовать MICRO USB адаптер 5pin

Подключим светодиод к сенсорной кнопку . Как видим все работает.

Если же подключить реле к сенсорной кнопке TTP223 .

Оно не работает, потому, что кнопку можно подключить как логический ключ. Электродвигателя, реле и пр. (даже на 3-5 В) работать не будут. Сенсорная кнопка просто сгорит. Для примера я подключал параллельно 3 светодиода. И как видно из эксперимента начинаются ложные срабатывания. По техническим характеристикам даже 4 светодиода для данной кнопки много.

Но не обязательно ограничиваться реле. Можно подключать MOSSFET или твердотельное реле.

Проверку на работоспособность с разными материалами: пластик, картон, фанерой. Если на сенсорную кнопку положить материал не толще 2 мм. Кнопка работает отлично. Более 2 мм. Работает только с пластиком. Но это у меня. Возможно у вас будут другие результаты. Как у вас работают сенсорные кнопки пишите в комментарии.

Вывод: Сенсорная кнопка TTP223 имеет ряд преимуществ при использовании в проектах на Arduino , по сравнению с тактовой кнопкой. Но она не может быть использована в силовых цепях.

Подписывайтесь на мой канал на Youtube и вступайте в группы в

Вконтакте и Facebook.

Понравилась статья? Поделитесь ею с друзьями:

Сенсорная кнопка (Trema-модуль v2.0)

Общие сведения:

Trema-модуль Сенсорная кнопка – это емкостная сенсорная кнопка, которая может служить источником сигналов (команд) для Ваших проектов. Кнопки используются для управления устройствами, подачи команд, осуществления настроек, ввода данных и т.д.

Видео:

Спецификация:

  • Рабочее напряжение: 3.3/5 В
  • Сопротивление прижимающего резистора: 10 кОм
  • Рабочая температура: -20 . 70 °C
  • Габариты: 30x30x15 (без учёта выводов)

Все модули линейки “Trema” выполнены в одном формате

Подключение:

Trema-модуль Сенсорная кнопка входит в линейку Trema-модулей, что позволяет подключать её к Arduino через Trema Shield по 4-х проводному шлейфу (который идёт в комплекте с кнопкой) без пайки, без дополнительных проводов и переходников.

Trema-модуль Сенсорная кнопка можно подключать к любому выводу Arduino, как цифровому, так и аналоговому.

Модуль удобно подключать 3 способами, в зависимости от ситуации:

Способ – 1 : Используя проводной шлейф и Piranha UNO

Используя провода «Папа — Мама», подключаем напрямую к контроллеру Piranha UNO.

Способ – 2 : Используя Trema Set Shield

Модуль можно подключить к любому из цифровых или аналоговых входов Trema Set Shield.

Способ – 3 : Используя проводной шлейф и Shield

Используя один 4-х проводной шлейф, к Trema Shield, Trema-Power Shield, Motor Shield, Trema Shield NANO и тд.

Питание:

Рабочее напряжение питания от 3.3В до 5В постоянного тока.

Подробнее о модуле:

Trema-модуль Сенсорная кнопка построена на базе чипа TTP223 и предназначена для коммутации электрических цепей и широко используется в радиоэлектронной аппаратуре.

Trema-модуль Сенсорная кнопка имеет четыре вывода: GND (G), Vcc (V), Signal (K), Trigger(T). В не нажатом состоянии на выходе K присутствует уровень логического «0» (выход прижат к GND через резистор). В нажатом состоянии на выходе K устанавливается уровень логической «1» (выход соединяется с Vcc). Вывод T используется для перевода кнопки в режим триггера — режим, при котором кнопка работает как выключатель с защёлкой. Для этого достаточно подать на вывод T логическую “1”. Чтобы кнопка работала в обычном режиме, подайте на выход T логический “0” или отключите данный вывод.

Для работы с модулем нужно сконфигурировать вывод Arduino, подключённый к выходу K, как вход, а к выводу T как выход.

Читайте также:  Почему машину трясет сразу после старта

При считывании показаний с модуля нужно учитывать такое явление, как дребезг контактов. При нажатии или отпускании кнопки, её контакты сначала многократно и неконтролируемо замыкаются и размыкаются по причине того, что чип сенсора может улавливать воздействие руки в пограничной зоне, а постоянный логический уровень устанавливается только после окончания дребезга. Это значит, что если 1 раз нажать на кнопку и отпустить её, то алгоритм программы может зафиксировать многократное нажатие на кнопку, если в нём не учитывается подавление дребезга.

Для подавления влияния дребезга на алгоритм скетча, нужно после фиксации изменения логического уровня на выходе кнопки выдержать паузу, равную или превышающую время дребезга.

Примеры:

При работе с кнопкой можно фиксировать её состояния (нажата / отпущена) и события (нажимается / отпускается).

Фиксация всех состояний и событий в режиме кнопки:

В данном примере каждый участок кода выполняется в зависимости от состояния или события кнопки.

Фиксация всех состояний и событий в режиме выключателя с защёлкой:

В любом из указанных скетчей можно использовать не все участки кода, а только те, которые требуются Вам.

Сенсорные кнопки

Подберите сенсорные кнопки:

Сенсорные кнопки – превосходная альтернатива механическим кнопкам. Они не изнашиваются, не ломаются, не засоряются, изготовлены из гигиенических материалов (соответствуют санитарно – эпидемиологическим нормам и имеют гигиенический сертификат) и устойчивы к агрессивным жидкостям, использующимся при дезинфекции.

Сенсорные кнопки не требуют нажимного усилия и срабатывают от легкого прикосновения пальца, в том числе от касания руки, облачённой в гигиеническую перчатку (латекс, полиэтилен).

Сенсорные кнопки востребованы:

  • в системах управления медицинским оборудованием
  • в химической
  • фармацевтической
  • пищевой промышленности
  • в том числе в чистых помещениях, соответствующих стандарту ГОСТ ИСО 14644-4-2002
  • в запылённых условиях
  • в панелях управления лифтом
  • взамен или дополнительно к сенсорным панелям (например, в автоматах самообслуживания)
  • в панелях управления, встроенных над пассажирскими креслами самолётов, автобусов, поездов
  • взамен механическим кнопкам в щитах и пультах управления (например, тестомешалкой, CIP-мойкой, прибором сбора нефти, фасовочным автоматом или на пропускном пункте охраны)
  • в качестве аварийных кнопок вызова охраны
  • в туалетах электропоездов и пассажирских вагонах
  • в транспортных средствах
  • на учебных стендах для презентаций
  • в качестве дверного звонка
  • в саунах, душевых, бассейнах или на автомойках*

*Для помещений с повышенной влажностью рекомендуем сенсорные кнопки с пониженной чувствительностью. Они не реагируют на брызги, капли воды и конденсат.

Чувствительная поверхность кнопки генерирует электростатическое поле и реагирует на изменение емкости при попадании в поле тела, обладающего определенной диэлектрической проницаемостью.

Датчик настроен на касание руки человека. С целью устранения помех и ложного срабатывания, кнопка сканирует касание в течение короткого промежутка времени, соответствующего нормальной человеческой реакции при нажатии. При срабатывании кнопки происходит переключение выходного транзисторного ключа и, соответственно, изменение уровня выходного электрического сигнала.

Вокруг чувствительной поверхности кнопка производит свечение, при касании меняя цвет, например, с зеленого на красный или наоборот. Сенсорные кнопки НПК ТЕКО Челябинск включают модели с внешним переключением световой индикации, позволяющие отображать состояние цепи управления. В центре чувствительной поверхности, под прозрачным колпачком может быть размещена пиктограмма (примеры пиктограмм), указывающая на предназначение кнопки. Кнопка поставляется без пиктограммы.

Преимущества сенсорных кнопок перед механическими:

  • неограниченное количество срабатываний
  • современный и эстетичный дизайн
  • долговечная работа в условиях сильной запыленности и влаги
  • устойчивость к обработке агрессивными жидкостями
  • гигиеническое исполнение (допуск к пищевому и фармацевтическому производству)
  • световая индикация и возможность внешнего управления ею
  • дополнительные функциональные возможности
  • герметизация с уровнем IP68 со стороны чувствительной поверхности

Конструктивное исполнение

Стандартное исполнениеГигиеническое исполнение

Сенсорные кнопки выполнены из нержавеющей стали марки 12Х18Н10Т, удовлетворяющей гигиеническим требованиям.
Степень герметизации со стороны чувствительной поверхности – IP 68, со стороны задней заглушки – IP 67.
Диаметр отверстия под кнопку – 22 мм.

Конструкция состоит из 3-х сборных частей (не учитывая гайки и шайбы):

  • цилиндрического резьбового корпуса кнопки в сборе (вкл. электронные компоненты, кабельный отвод) (нерж. сталь);
  • наружной шляпки с резьбой (нерж. сталь);
  • прозрачного пластикового колпачка (поликарбонат).

Общие электрические характеристики

Функциональные варианты

Сенсорные кнопки выпускаются в пяти функциональных вариантах, повторяющих и расширяющих функции, присущие обычным механическим кнопкам.

Напряжение питания, В DC10…30
Внутренний ток потребления, мА≤ 30
Рабочий ток, мА≤ 200
Падение напряжения при рабочем токе, В≤ 2,5
Время опроса (длительность касания), мс

Триггерный (KT-. ). Изменение выходного сигнала происходит при каждом касании кнопки, аналогично механической кнопке с фиксацией. При отключении напряжения питания и повторном включении кнопка переходит в ждущий режим.

Статический (KS-. ). Включение (активация) кнопки происходит при касании, а выключение при отпускании. Данный вариант является аналогом механическое кнопки без фиксации. Примечание: длительность активации кнопки ограничена 15 секундами, после чего кнопка автоматически переходит в выключенное состояние.

Комбинированный (KC-. ). Сочетает статический и триггерный варианты. Включение (активация) кнопки происходит при касании, если его длительность превышает 0,3с, а выключение при отпускании, аналогично статическому варианту. При двойном коротком касании (длительность первого касания не более 0,3с, интервал между касаниями не более 0,5с) кнопка включается по триггерному варианту и удерживает сигнал до следующего касания.

Пультовый (KP-. ). Включение (активация) приосходит касанием кнопки при наличии положительного напряжения на обоих входах сброса. Сброс (возврат в ждущий режим) осуществляется по пропаданию положительного напряжения на любом из входов сброса. Сбросовые воздействия имеют приоритет над включающими. Ждущий режим индицируется подсветкой 1, а при активном обе подсветки выключены.

Динамический (KD-. ). При касании кнопки, не зависимо от длительности касания, переключение выходного сигнала происходит в виде импульса с фиксированной длительностью 300мс.

Управление подсветкой

Рабочее состояние сенсорной кнопки разделяется на ждущий и активный режимы.

  • Ждущий режим отражает состояние кнопки после подачи напряжения питания и до момента касания.
  • Активный режим отражает состояние кнопки во время или после касания и исполнения процедуры, соответствующей выбранному функциональному варианту.

Доступны три варианта управления подсветкой: внутренний, частично-внешний и внешний.

  • В кнопках с внутренним управлением подсветкой (Kx-22xSx-xxA…) подсветка 1 включается сразу после подачи напряжения питания. При переходе в активный режим включается подсветка подсветка 2, подсветка ждущего режима отключается.
  • В кнопках с частично-внешним управлением подсветкой (Kx-22xSx-xxB…), подсветка ждущего режима (подсветка 1) включается после подачи напряжения питания, а для активации подсветки активного режима (подсветка 2) необходимо на вход управления подать положительное относительно минусового провода питания управляющее напряжение. Во время действия этого напряжения подсветка ждущего режима отключена.
  • В кнопках с внешним управлением подсветкой (Kx-22xSx-xxС…) управление подсветкой 1 и подсветкой 2 осуществляется внешними положительными относительно минусового провода питания управляющими напряжениями, подаваемыми на входы управления кнопки. При одновременной подаче управляющих напряжений включатся обе подсветки.

Примечание: для пультового варианта кнопки вышеописанное управление подсветкой недействительно.

Схемы подключения

Для каждого функционального варианта возможны следующие схемы подключения:

  • схемы с внутренним управлением подсветкой ждущего и активного режимов, PNP или NPN, нормально открытого или переключающего типа;
  • схемы с внешним управлением подсветкой активного режима, PNP или NPN, нормально открытого или переключающего типа;
  • схемы с внешним управлением подсветкой 1 и подсветкой 2, PNP или NPN, нормально открытого или переключающего типа.

Внутреннее управлением подсветкой (А).
Подсветка ждущего режима включается сразу после подачи напряжения питания. При касании кнопки включается подсветка активного режима, подсветка ждущего режима отключается.

Частично-внешнее управление подсветкой (В).
Подсветка ждущего режима включается после подачи напряжения питания, а для активации подсветки активного режима необходимо на вход управления подать управляющее напряжение. Во время действия этого напряжения подсветка ждущего режима отключена. Это удобная возможность индикации состояния других элементов, задействованных в цепи управления.

Внешнее управление подсветкой (С).
управление подсветкой осуществляется внешними управляющими напряжениями, подаваемыми на входы управления кнопки. При одновременной подаче управляющих напряжений включатся обе подсветки. Поэтому, при использовании полного внешнего управления подсветкой, пользователь должен самостоятельно разработать логику подачи сигналов для подсветки от внешних приборов.

Пример соединения пультовой и статической кнопок:

Добавить комментарий